簡易檢索 / 詳目顯示

研究生: 陳意仁
Chen, Yi-ren
論文名稱: 介電材料低溫交聯性聚乙烯苯酚應用於可撓曲性有機薄膜電晶體之研究
Gate Dielectric Low Temperature Crosslinking Poly vinylphenol Applied in Flexible Thin-film Transistors
指導教授: 周維揚
Chou, Wei-yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 104
中文關鍵詞: 可撓曲性有機薄膜電晶體載子遷移率表面能耦合能
外文關鍵詞: coupling energy, surface energy, mobility, flexible organic thin-film transistors
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用低溫交聯性聚乙烯苯酚介電材料作為可撓曲性有機薄膜電晶體之絕緣層。比較元件受伸展及壓縮應力時元件光電特性的改變情形,用電性的結果去推論pentacene薄膜受應力時的變化;再分析薄膜彎曲時之拉曼光譜圖,發現藉由1158 cm-1之Davydov-splitting計算出分子間的耦合能以及使用Gaussian Lorentzian 函數去擬合出拉曼峰值的半高寬兩種方法,可以佐證pentacene薄膜彎曲時微結構的變化與元件特性載子遷移率有關。再利用此介電材料作為有機薄膜電晶體之修飾層,以氧氣電漿接觸介電層表面改變其表面能;從電性的結果得知,臨界電壓因介電層表面受氧氣電漿處理過而變好;由拉曼光譜分析可得知pentacene成長於不同表面能介電層上結構的不同,並利用X-ray繞射分析發現pentacene成長在愈不匹配表面能介電層上,分子長軸與介電層法線方向夾角愈大且亂度愈大成非結晶態,結晶區域大小也有較大趨勢;最後利用原子力顯微鏡觀察pentacene表面形態,發現pentacene成長在與其表面能38.5 mJ/m2最接近的介電層上,分子的排列成各自方向性最為整齊,對照其元件特性表現亦是最佳。

    Low temperature crosslinking poly-vinylphenol (PVP) was successfully used as gate dielectric of flexible organic thin-film transistors (OTFTs). Comparing the electro-optical characteristic differences between the devices suffered tensile and compressive strains; the characteristic variation of pentacene thin-film is significant under tensile state. The relation between the field-effect mobility and the change of pentacene thin-film microstructure under bend state can be interpreted by the coupling energy of pentacene molecules arising from Davydov splitting at 1158 cm-1 of Raman spectrum. Furthermore, PVP was also used as modifier layer of SiO2 gate dielectric for pentacene-based OTFTs. In order to improve threshold voltage the PVP film was treated within O2 plasma environment. When the exposed time of the O2 plasma was increased, pentacene molecules arrange disorderly and aggregate in smaller crystalline size due to increase of the surface energy of PVP dielectric. Finally, the order morphology of pentacene film is highly relative to surface energy of dielectric from the measurement of atomic force microscope. Dielectric surface energy closed 38.5 mJ/m2 of pentacene film; molecule structure has higher ordering and homogeneity.

    摘要 III Abstract IV 致謝 V 目次 VI 表目錄 X 圖目錄 XI 第1章 簡介 1 1.1 有機半導體(organic semiconductor) 1 1.1.1 有機半導體之簡介 1 1.1.2 有機半導體的傳輸機制 2 1.1.3 Pentacene的簡介 5 1.2 有機薄膜電晶體 6 1.2.1 有機薄膜電晶體概論 6 1.2.2 有機薄膜電晶體之結構 7 1.2.3 有機薄膜電晶體之製作 8 1.2.4 元件操作原理 8 1.2.5 基本特性及公式 9 第2章 實驗及量測儀器原理 17 2.1 物理氣相沉積蒸鍍系統 17 2.1.1 氣相沉積原理 17 2.1.2 薄膜沉積機制 18 2.2 氧氣電漿乾蝕刻系統 19 2.3 拉曼(Raman)光譜儀量測系統 19 2.3.1 拉曼光譜原理 20 2.3.2 Davydov splitting[15] 22 2.4 X-ray 繞射原理及量測系統 23 2.4.1 X光繞射條件[35] 23 2.4.2 多晶體繞射峰形成原理之解釋[35] 24 2.5 表面能之量測 25 2.6 原子力顯微鏡系統 26 2.7 電性分析 27 第3章 可撓性有機薄膜電晶體元件特性研究 38 3.1 元件之製作 38 3.2 電性結果與討論 39 3.2.1 彎曲元件特性討論 39 3.2.2 磁滯現象(hysteresis)討論 41 3.2.3 元件重覆彎曲後特性結果 43 3.3 拉曼光譜分析 44 3.3.1 拉曼光譜儀量測 44 3.3.2 分析討論 45 3.4 X-ray分析 47 第4章 於不同表面能介電層上成長pentacene薄膜電晶體之元件特性研究 68 4.1 元件之製作 68 4.2 電性結果與討論 69 4.2.1 不同厚度pentacene對元件特性的影響 69 4.2.2 不同介電層表面能對元件特性的探討 71 4.3 拉曼光譜討論 74 4.3.1 拉曼量測 74 4.3.2 拉曼光譜分析 74 4.4 X-ray分析 75 4.5 AFM分析 78 第5章 總結與未來展望 97 參考文獻 99

    [1]. A Pochettino, Acad. Lincei Rendic., vol. 15, p.355 (1906).
    [2]. A. Szent-Gyorgi, “Towards a new biochemistry?”, Science, vol. 32, p. 609 (1941).
    [3]. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, “Electrical conductivity in doped polyacetylene”, Physical Review Letters, vol. 39, p. 1098 (1977).
    [4]. F. Garnier, R. Hajlaoui, A. Yassar, P. Srivastava, “All-Polymer Field-Effect Transistor Realized by Printing Techniques”, Science 265, 1684 (1994).
    [5]. G. A. de Wijs, C. C. Mattheusa, R. A. de Groot, T. T. M. Palstra, Synth. Met. 139,109 (2003).
    [6]. R. sterbacka, C. P. An, X. M. Jiang and Z. V. Vardeny, “Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals”, Science 287, 839 (2000).
    [7]. Y. Sun, Y. Liu and D. Zhu, “Advances in organic field-effect transistors”, J. Mater. Chem. 15, 53 (2005).
    [8]. 陳儒賢, “不同介電材料之表面能對pentacene複晶薄膜所產生之應力的研究”, 碩士論文, 國立成功大學 (2006).
    [9]. L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung and H. E. Katz, “Intrinsic Transport Properties and Performance Limits of Organic Field-Effect Transistors”, Science, 272, 1462 (1996).
    [10]. T. Holstein, Ann. Phys., 8, 343 (1959).
    [11]. S. Kojima, “Low-frequency Raman investigation of the liquid-glass transition in glycerol”, Phys. Rev. B, 47, 2924 (1993).
    [12]. E. M. Conwell, H. Y. Choi and S. Jeyadev, “Transverse polaron bandwidth in trans-polyacetylene”, J. Phys. Chem., 96, 2827 (1992).
    [13]. J. H. Schön, C. Kloc and B. Batlogg, “Low-temperature transport in high-mobility polycrystalline pentacene field-effect transistors”, Phys. Rev. B, 63, 125304 (2001).
    [14]. M. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed., Oxford University Press, Oxford 1999, pp.353-360
    [15]. 買昱椉, “五環素薄膜初期成長機制研究”, 博士論文, 國立成功大學 (2007).
    [16]. T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, T. D. Jones, “High Performance Organic Thin Film Transistors”, Mater. Res. Soc. Symp. Proc. 771, 169 (2003).
    [17]. T. Minakata, H. Imai, M. Ozaki, K. Saco, “Structural studies on highly ordered and highly conductive thin films of pentacene”, J. Appl. Phys. 72, 5220 (1992).
    [18]. C. D. Dimitrakopoulos, A. R. Brown, A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications”, J. Appl. Phys. 80, 2501 (1996).
    [19]. R. Ruiz, B. Nickel, N. Koch, L. Feldman, R. Haglund, A. Kahn, G. Scoles, “Pentacene ultrathin film formation on reduced and oxidized Si surfaces”, Phys. Rev. B 67, 125406 (2003).
    [20]. F. Barbe and C. R. Westgate, “Surface state parameters of metal-free phthalocyanine single crystals”, J. Phys. Chem. Solids 31, 2679 (1970).
    [21]. M. L. Petrova, L. D. Rozenshtein, and Fiz. Tverd. Tela, “Field effect in the organic semiconductor chloranil”, Sov. Phys.-Solid State 12, 961 (1970).
    [22]. A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film”, Applied Physics Letters, 49, 1210 (1986).
    [23]. S. H. Lee, D. J. Choo, S. H. Han, J. H. Kim, Y. R. Son, J. Jang, “High performance organic thin-film transistors with photopatterned gate dielectric”, Applied Physics Letters, 90, 033502 (2007).
    [24]. R. Ruiz, A. Papadimitratos, A. C. Mayer and G. G. Malliaras, “Thickness dependence of mobility in pentacene thin-film transistors”, Adv. Mater., 17, 1795 (2005).
    [25]. D. Knipp, R. A. Street, A. Völkel, J. Ho, “Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport”, J. Appl. Phys. 93, 347 (2003).
    [26]. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors”, J. Appl. Phys. 92, 5259 (2002).
    [27]. A. C. Mayer, M. L. Swiggers, C. J. Johnson, J. L. Mack, Z. T. Zhu, R. L. Headrick, G. G. Malliaras, in Thin Film Transistor Technologies (ED: Y. Kuo), Electrochemical Society, Pennington, NJ 2002, p.288
    [28]. 王之傑, “製作於軟性基板的高分子有機薄膜電晶體之研究”, 碩士論文, 國立成功大學 (2007).
    [29]. M. D. Austin, S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography”, Applied Physics Letters 81, 4431 (2002).
    [30]. S. M. Sze, Semiconductor Devices Physics and Technology, 2nd, p.187.
    [31]. John R. Ferraro, Kazua Nakamoto, Chris W. Brown, “Introductory Raman spectroscopy”, 2nd edition, Academic Press, Boston, p. 15 (2003).
    [32]. A. S. Davydov, “Theory of Molecular Excitons”, McGraw-Hill, New York, p. 21 (1971).
    [33]. T. M. Nedungadi, Proc. Indian Acad. Sci., 15, 376 (1942).
    [34]. L. Colangeli, V. Mennella, G. A. Baratta, E. Bussoletti and G. Strazzulla, “Raman and infrared spectra of polycyclic aromatic hydrocarbon molecules of possible astrophysical interest”, Astrophys. J., 396. 369 (1992).
    [35]. 汪建民主編, “材料分析”, 材料科學叢書2, 四版 (2005)
    [36]. D. Gamota, J. Zhang, P. Brazis, K. Kalyanasundaram, “Printed organic and molecular electronics”, Kluwer Academic Publishers (2004).
    [37]. T. Sekitani, Y. Kato, S. Iba, H. Shinaoka, T. Someya, T. Sakurai, S. Takagi, “Bending experiment on pentacene field-effect transistors on plastic films”, Applied Physics Letters 86, 073511 (2005).
    [38]. G. Gu, M. G. Kane, S. C. Mau, “Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors”, J. Appl. Phys. 101, 014504 (2007).
    [39]. Sangyun Lee, Bonwon Koo, Joonghan Shin, Eunkyong Lee, Hyunjeong Park, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance”, Applied Physics Letters 88, 162109 (2006).
    [40]. W. J. Kim, C. S. Kim, S. J. Jo, S. W. Lee, S. J. Lee, H. K. Baik, “Observation of the Hysteresis Behavior of Pentacene Thin-Film Transistors in I–V and C–V Measurements”, Electrochemical and Solid-State Letters 10, H1-H4 (2007).
    [41]. M. Shtein, J. Mapel, J. B. Benziger, S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors”, Appl. Phys. Lett. 81, 268 (2002).
    [42]. H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, X. W. Liang, “Thickness-Dependent Structure Evolutions and Growth Models in Relation to Carrier Transport properties in Polycrtstalline Pentacene Thin Films”, Advanced Functional Materials, accepted (2007).
    [43]. R. He, I. Dujovne, L. Chen, Q. Miao, C. F. Hirjibehedin, A. Pinczuk, C. Nuckolls, C. Kloc, A. Ron, “Resonant Raman scattering in nanoscale pentacene films”, Appl. Phys. Lett. 84, 987 (2004).
    [44]. A. Weinstein, R. Zallen, in Light Scattering in Solids IV (Eds: M. Cardona,G. Güntherodt), Springer, Berlin, p. 500. (1984).
    [45]. S. Y. Yang, K. Shin, C. E. Park, “The Effect of Gate-Dielectric Surface Energy on Pentacene Morphology and Organic Field-Effect Transistor Characteristics”, Adv. Funct. Mater. 15, 1806 (2005).
    [46]. J. Lee, K. Kim, J. H. Kim, S. Im, D. Y. Jung, “Optimum channel thickness in pentacene-based thin-film transistors”, Appl. Phys. Lett. 82, 4169 (2003).
    [47]. J. Lee, J. H. Kim, S. Im, D. Y. Jung, “Threshold voltage change due to organic-inorganic interface in pentacene thin-film transistors”, J. Appl. Phys. 96, 2301 (2004).
    [48]. L. F. Drummy, D. C. Martin, “Thickness-Driven Orthorhombic to Triclinic Phase Transformation in Pentacene Thin Films”, Adv. Mater. 17, 903 (2005).
    [49]. 張癸森, “以低溫電漿提昇吸附材表面性質”, 碩士論文, 中原大學 (2001).
    [50]. A. Rolland, J. Richard, J.-P. Kleider and D. Mencaraglia, “Electrical Properties of Amorphous Silicon Transistors and MIS-Devices: Comparative Study of Top Nitride and Bottom Nitride Configurations”, J. Electrochem. Soc. 140, 3679 (1993).
    [51]. L. E. Alexander, “X-ray Diffraction Methods in polymer science”, Wiley, New York, 429 (1969).
    [52]. G. Horowitz, “Organic thin film transistors: From theory to real devices”, J. Mater. Res. 19, 1946 (2004).
    [53]. S. J. Kang, M. Noh, D. S. Park, H. J. Kim, C. N. Whang, C. H. Chang, “Influence of postannealing on polycrystalline pentacene thin film transistor”, J. Appl. Phys. 95, 2293 (2004).

    下載圖示 校內:2008-07-17公開
    校外:2008-07-17公開
    QR CODE