| 研究生: |
姜曼婷 Jiang, Man-Ting |
|---|---|
| 論文名稱: |
官能化的雙茚二酮衍生物之合成與結構探討 Syntheses and Characterization of Functionalized Biindenedione Derivatives |
| 指導教授: |
吳耀庭
Wu, Yao-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | Stone-Wales 缺陷 、雙茚二酮 、奈米碳管 、石墨烯 |
| 外文關鍵詞: | biindenedione, Stone-Wales defect, carbon nanotubes, graphene |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在受到張力超過臨界值的情況下,奈米碳管及石墨烯會藉由形成 Stone-Wales 缺陷來釋放多餘能量,而 Stone-Wales 缺陷由計算結果得知會對奈米碳管與石墨烯之機械性質、化學反應性及儲氫能力造成影響。因此對 Stone-Wales 缺陷結構的研究能在往後奈米材料的發展上有很大的貢獻。本篇論文利用官能化的雙茚二酮衍生物嘗試合成 Stone-Wales 缺陷結構,並對其進行性質上的分析及探討。
期望合成奈米碳管及石墨烯中之 Stone-Wales 缺陷片段衍生物 7,經由實驗結果發現利用合成路經一可順利合成化合物 15,但由於 4-叔丁基苯基對烯丙基陽離子的親電取代反應而無法成功得到七員環化合物 13,形成新六員環化合物 27;在合成路徑二,雖然成功合成官能化的雙茚二酮衍生物 34,卻由於改變萘環官能基後產生之立體障礙而難以合環形成化合物 35。結果顯示,萘環上官能基之苯基的 C2 號位置及 C6 號位置需具有取代基以避免苯基進行親電取代反應,形成六員環,然而,具有取代基後所產生之立體障礙該如何克服,進而順利環化反應則是以合成路徑二進一步合成 Stone-Wales 缺陷片段的重要議題。
Stone-Wales defect has been predicted to affect the chemical reactivity, the ability of absorbing hydrogen, and mechanical properties of carbon nanotubes and graphene. Therefore, we use 3,3'-dihydroxy-1H,1'H-[2,2'-biindene]-1,1'-dione (2) as the starting material for the synthesis of product which has Stone-Wales defect. We successfully obtain 3,3'-bis(2,7-bis(4-(tert-butyl)benzyl)naphthalen-1-yl)-1H,1'H-[2,2'-biindene]-1,1'-diol (15), however, electrophilic aromatic substitution of the 4-tert-butylbenzene to the allylic carbocation to produce 10',10'-di-tert-butyl-2',2'-bis(4-(tert-butyl)benzyl)-2,2'-bispiro-[indene-1,12'-tetraphene] (27). Then, we attempt to synthesize 6,6'-dimesityl-[1,1'-bi(cyclopenta[no]-tetraphene)]-2,2'(6H,6'H)-dione (35) by 3,3'-bis(2-(hydroxy(mesityl)-methyl)naphthalen-1-yl)-1H,1'H-[2,2'-biindene]-1,1'-dione (34), but it’s difficult for cyclization of 34, due to steric effects. For the future work, we will be in the process of researching the proper condition for synthesizing 35.
1. Tang, M. L.; Bao, Z. Chem. Mater. 2011, 23, 446–455.
2. Kim, K. K.; Kim, S. M.; Lee, Y. H. Acc. Chem. Res. 2016, 49, 390−399.
3. Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Science 2000, 287, 637−640.
4. Forro, L.; Salvetat, J. P.; Bonard, J. M.; Bacsa, R.; Thomson, N. H.; Garaj, S.; Thien-Nga, L.; Gaál, R.; Kulik, A. et al. Science and Application of Nanotubes, 2002, 297–320
5. Hong, S.; Myung, S. Nat. Nanotechnol. 2007, 2, 207–208.
6. Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. Nano Lett. 2006, 6, 96–100.
7. Tylianakis, E.; Dimitrakakis, G.K.; Martin-Martinez, F. J.; Melchor, S.; Dobado, J. A.; Klontzas, E.; Froudakis, G. E. J. Hydrogen Engergy 2014, 39, 9825–9829.
8. Kim, K. K.; Reina, A.; Shi, Y.; Park, H.; Li, L. J.; Lee, Y. H.; Kong, J. Nanotechnology 2010, 21, 285205.
9. Tan, C. W.; Tan, K. H.; Ong, Y. T.; Mohamed, A. R.; Zein, S. H. S.; Tan, S. H. Environ. Chem. Lett. 2012, 10, 265–273.
10. (a) Novoselov, K. S.; Geim, A. K.;Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666–669; (b) Novoselov, K. S.; Geim, A. K.;Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197−200.
11. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.
12. Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183–191.
13. Murali, R.; Yang, Y.; Brenner, K.; Beck, T.; Meindl, J. D. Appl. Phys. Lett. 2009, 94, 243114.
14. Avouris, P. Nano Lett. 2010, 10, 4285−4294.
15. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902−907.
16. Arco, L. G. D.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C. ACS Nano 2010, 4, 2865−2873.
17. Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Arquer, F. P. G. D.; Gatti, F.; Koppens, F. H. L. Nat. Nanotechnol. 2012, 7, 363−368.
18. Zhang, H.; Tang, D.; Knize, R. J.; Zhao, L.; Bao, Q.; Loh, K. P. Appl. Phys. Lett. 2010, 96, 111112.
19. Sun, Z.; Martinez, A.; Wang, F. Nat. Photonics 2016, 10, 227−238.
20. 馬廣仁 (民90)。奈米碳管的性質與應用。工業材料雜誌,179,92−95。
21. 蘇清源 (2011)。石墨烯氧化物之特性與應用前景。物理雙月刊,33 (2),163−167。
22. Nardelli, M. B.; Yakobson, B. I.; Bernholc, J. Phys. Rev. B 1998, 57, R4277.
23. Stone, A. J.; Wales, D. J. Chem. Phys. Lett. 1986, 128, 501−503.
24. Bettinger, H. F. J. Phys. Chem. B 2005, 109, 6922–6924.
25. Berthe, M.; Yoshida, S.; Ebine, Y.; Kanazawa, K.; Okada, A.; Taninaka, A.; Takeuchi et al. Nano Lett. 2007, 7, 3623–3627.
26. Meyer, J. C.; Kisielowski, C.; Erni, R.; Rossell, M. D.; Crommie, M. F.; Zettl, A. Nano Lett.2008, 8, 3582–3586.
27. Ma, J.; Alfè, D.; Michaelides, A.; Wang, E. Phys. Rev. B 2009, 80, 033407.
28. Sharma, K.; Saxena, K. K.; Shukla, M. Procedia Engineer. 2012, 38, 3373–3380.
29. Lu, X.; Chen, Z.; Schleyer, P. R. J. Am. Chem. Soc. 2005, 127, 20–21.
30. Bolivar-Pineda, L. M.; Basiuk, V. A. J. Appl. Phys. 2020, 127, 025302.
31. Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801–1804.
32. Ebrahem, F.; Bamer, F.; Markert, B. J. Mater. Sci. 2020, 55, 3470–3483.
33. Letardi, S.; Celino, M.; Cleri, F.; Rosato, V. Surf. Sci. 2002, 496, 33–38.
34. Yin, H. C.; Shi, X.; He, C.; Martinez-Canales, M.; Li, J.; Pickard, C. J.; Tang, C.; Outang, T.; Zhand, C.; Zhong, J. Phys. Rev. B 2019, 99, 041405.
35. Gabriel, S. L. Ber. Dtsch. Chem. Ges. 1898, 31, 1159–1174.
36. Zelenský, I.; Zacharová-Kalavská, D.; Vrabcová, V.; Perjéssy, A. Chem. Commun. 1970, 35, 644–650.
37. Huang, N. Z.; Lakshmikantham, M. V.; Cava, M. P. J. Org. Chem. 1987, 52, 169–172.
38. Chakrabarty, M.; Mukherji, A.; Arima, S.; Harigaya, Y.; Pilet, G. Monatsh. Chem. 2009, 140, 189–197.
39. Cort, L. A.; Mahesar, M. A. J. Chem. Soc., Perkin Trans. 1 1979, 2034–2043.
40. Garimalla, A.; Harmata, M. Synthesis 2018, 50, 4483–4489.
41. Gao, G.; Gu, F. L.; Jiang, J. X.; Jiang, K.; Sheng, C. Q.; Lai, G. Q.; Xu, L. W. Chem. Eur. J. 2011, 17, 2698–2703.
42. (a) Carreño, M. C.; González-López, M.; Latorre, A.; Urbano, A. J. Org. Chem. 2006, 71 (13), 4956–4964; (b) Salman, G. A.; Mahal, A.; Shkoor, M.; Hussain, M.; Villinger, A.; Langer, P. Tetrahedron Lett. 2011, 52, 392–394; (c) Wang, X. Y.; Urgel, J. I.; Barin, G. B.; Eimre, K.; Giovannantonio, M. D. et al. J. Am. Chem. Soc. 2018, 140, 9104–9107; (d) Wang, Z. Q.; Feng, C. G.; Xu, M. H.; Lin, G. Q. J. Am. Chem. Soc. 2007, 129, 5336–5337; (e) Lou, S. J.; Li, X. H.; Zhou, X. L.; Fang, D. M.; Gao, F. ACS Omega 2020, 5, 5589–5600.
43. Li, X.; Xu, L.; Han, J.; Pang, M.; Ma, H.; Meng, J. Tetrahedron 2005, 61, 5373–5377.
44. Bonaparte, A. C.; Betush, M. P.; Panseri, B. M.; Mastarone, D. J.; Murphy, R. K.; Murphree, S. S. Org. Lett. 2011, 13, 1447–1449.
45. Bazzini, C.; Brovelli, S.; Caronna, T.; Gambarotti, C.; Giannone, M.; Macchi, P.; Meinardi, F.; Mele, A. Eur. J. Org. Chem. 2005, 1247–1257.
46. Frølund, B.; Jensen, L. S.; Guandalini, L.; Canillo, C.; Vestergaard, H. T.; Kristiansen, U.; Nielsen, B. et al. J. Med. Chem. 2005, 48, 427–439.
47. Liu, Y. E.; Lu, Z.; Li, B.; Tian, J.; Liu, F.; Zhao, J.; Hou, C.; Li, Y.; Niu, L.; Zhao, B. J. Am. Chem. Soc. 2016, 138, 10730–10733.
48. (a) Xia, Y.; Liu, Z.; Xiao, Q.; Qu, P.; Ge, R.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2012, 51, 5714–5717; (b) Barluenga, J.; Trincado, M.; Rubio, E.; González, J. M. Angew. Chem. Int. Ed. 2006, 45, 3140–3143; (c) Dong, C. G.; Hu, Q. S. J. Am. Chem. Soc. 2005, 127, 10006–10007; (d) Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979, 866–867.
49. Wang, C. Y. Dong, C.; Zheng, Z. J.; Xu, Z.; Yang, K. F.; Xu, L. W. RSC Adv. 2015, 5, 55819.
50. Larkem, H.; Larkem, A.; Messadi, D. Egypt. J. Chem. 2004, 47, 413–426.
51. Wang, C.; Rakshit, S.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 14006–14008.
52. Wu, N.; Messinis, A.; Batsanov, A. S.; Yang, Z.; Whiting, A.; Marder, T. B. Chem. Commun. 2012, 48, 9986–9988.
53. Rubial, B.; Collins, B. S. L.; Bigler, R.; Aichhorn, S.; Noble, A.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2019, 58, 1366–1370.
54. Vautravers, N. R.; Regent, D. D.; Breit, B. Chem. Commun. 2011, 47, 6635–6637.
55. Engel, R.; Schayer, H. J.; Steckgan, E. Liebigs Ann. Chem. 1977, 204-224
56. Dyker, G.; Nerenzb, F.; Siemsenb, P.; Bubenitschek, P.; Jones, P. G. Chem. Ber. 1996, 129, 1265- 1269