| 研究生: |
林靖喬 Lin, Ching-Chiao |
|---|---|
| 論文名稱: |
TP53突變R280T在范可尼路徑中的機制 The function of TP53 mutant, R280T, in Fanconi anemia pathway |
| 指導教授: |
廖泓鈞
Liaw, Hungjiun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 順鉑 、TP53 、范可尼路徑 、同源重組 、DNA損傷 、methyl methanesulfonate 、後複製修復 、姊妹染色體互換 |
| 外文關鍵詞: | Cisplatin, TP53, Fanconi anemia pathway, homologus recombination, DNA damage, methyl methanesulfonate, post-replication repair, sister chromatin exchange |
| 相關次數: | 點閱:151 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
順鉑(Cisplatin),是一個重要的化療藥物之一,廣泛的用於卵巢癌、子宮頸癌、頭頸癌、以及其他肺部相關癌症。其作用機制為對癌症細胞的DNA產生股內與股間的交聯(interstrand and intrastrand crosslinks),造成DNA複製停滯,最終導致DNA雙股斷裂,藉此達到殺死癌細胞的效用。然而,目前臨床上的化學治療遇到了一大關卡,就是抗藥性的產生。我們先前的研究指出,癌細胞對於順鉑抗藥性的產生與范可尼貧血(Fanconi anemia pathway, FA)、後複製修復(Post-replication repair, PRR)與同源重組(Homologus recombination, HR)修復路徑的增強有關,因此,我們要系統化的去探討癌症細胞是增加了哪些基因突變來促進抗藥性的生成。本篇研究由生物資訊分析的方向切入,利用次世代定序去分析未具抗藥性鼻咽癌細胞株(HONE1)及抗藥性鼻咽癌細胞株(HONE6和HONE15) 之間的基因表現差異以及突變情形,我們發現了在HONE6和HONE15中TP53 mRNA的表現比HONE1多出了兩倍之多,並且在TP53的DNA-binding domain找到了一個獨特的突變位點,初步認為可能是導致抗藥性產生的原因之一。為了證實這個結果,我們降解 (Knockdown) HONE6中的TP53基因表現,發現HONE6會對順鉑的抗藥性降低,以及一些FA與HR相關路徑的mRNA和蛋白表現量會降低,甚至在姐妹染色體互換率也有大幅下降的情形,但值得注意的是,我們發現在抗藥性鼻咽癌細胞中將TP53剔除後,並沒有對其它DNA損傷藥物(例:Methyl methanesulfonate , MMS)產生敏感性,且在DNA fiber中我們發現了TP53缺失的細胞,擁有更容易跨越DNA複製障礙並持續複製的能力。
綜合以上的結果推測,TP53在FA的修復路徑扮演著重要的角色,它可以調控其相關基因的表現,使癌細胞對順鉑的抗藥性提升。而在跨越DNA複製障礙的後複製修復路徑(Post-replication repair, PRR)與TP53可能無相關,後續機制得需要更深入的了解與探討才能得知。
Cisplatin, which is one of the important chemotherapeutic drugs, is widely used to treat in ovarian cancer, cervical cancer, head and neck cancer, and other lung related cancer. However, drug resistance is the major obstacle for the efficacy of the clinical chemotherapy. Our previous studies indicated that the drug resistance of cancer cells to cisplatin is related to the enhancement of Fanconi anemia pathway (FA), post-replication repair (PRR), and homologus recombination (HR). Therefore, we want to systematic explore the consequence of drug resistance is due to which gene mutations in cancer cells. This study is based on bioinformation analysis by using next-generation sequencing to analyze the differences in gene expression and mutations between the cisplatin-resistant nasopharyngeal carcinoma (NPC) cell lines (HONE6 and HONE15) and their parental cisplatin sensitive cell line HONE1. We found that the level of TP53 mRNA expression in HONE6 and HONE15 is two times more than the level in HONE1. Additionally, we also found a unique mutation in the DNA-binding domain of TP53, R280T. We hypothesized that the overexpressed R280T mutant could be one of the reasons that lead to drug resistance. Indeed, the depletion of R280T sensitizes HONE6 cells to cisplatin and also reduces the expression level of FANCD2 and BRCA1 in the FA and HR pathways. Consistent with these results, the depletion of the R280T mutant significantly reduces the frequency of sister chromatin exchange. Methyl methanesulfonate (MMS) can cause purine methylation while ultraviolet (UV) irradiation can cause thymine dimers. Both MMS and UV are commonly used to test in the PRR pathway. Interestingly, the depletion of the R280T mutant did not further sensitize HONE6 cells to MMS, when compared to the R280T-proficient control cells. The depletion of R280T did not further reduce replication tracks and increases the numbers of stalled forks in response to the treatment of MMS or UV, when compared to the R280T proficient control cells. Our preliminary results indicate that TP53 plays an important role in the FA repair pathway, but not in the PRR pathway. Further investigations will be conducted to clarify the role of TP53 in these distinct repair pathways.
Aschauer, L., and P.A. Muller. 2016. Novel targets and interaction partners of mutant p53 Gain-Of-Function. Biochem Soc Trans. 44:460-466.
Aylon, Y., and M. Oren. 2016. The Paradox of p53: What, How, and Why? Cold Spring Harb Perspect Med. 6.
Branzei, D., and M. Foiani. 2005. The DNA damage response during DNA replication. Curr Opin Cell Biol. 17:568-575.
Branzei, D., and M. Foiani. 2010. Maintaining genome stability at the replication fork. Nature reviews. Molecular cell biology. 11:208-219.
Chang, D.J., and K.A. Cimprich. 2009. DNA damage tolerance: when it's OK to make mistakes. Nat Chem Biol. 5:82-90.
Cheng, K.C., and L.A. Loeb. 1993. Genomic instability and tumor progression: mechanistic considerations. Adv Cancer Res. 60:121-156.
Ciccia, A., N. McDonald, and S.C. West. 2008. Structural and functional relationships of the XPF/MUS81 family of proteins. Annu Rev Biochem. 77:259-287.
Ciriello, G., M.L. Miller, B.A. Aksoy, Y. Senbabaoglu, N. Schultz, and C. Sander. 2013. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 45:1127-1133.
Clarke, A.R., C.A. Purdie, D.J. Harrison, R.G. Morris, C.C. Bird, M.L. Hooper, and A.H. Wyllie. 1993. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature. 362:849-852.
Cole, A.R., L.P. Lewis, and H. Walden. 2010. The structure of the catalytic subunit FANCL of the Fanconi anemia core complex. Nature structural & molecular biology. 17:294-298.
D'Andrea, A.D. 2013. BRCA1: a missing link in the Fanconi anemia/BRCA pathway. Cancer Discov. 3:376-378.
Eastman, A. 1987. The Formation, Isolation and Characterization of DNA Adducts Produced by Anticancer Platinum Complexes. Pharmacol Therapeut. 34:155-166.
Finlay, C.A., P.W. Hinds, and A.J. Levine. 1989. The p53 proto-oncogene can act as a suppressor of transformation. Cell. 57:1083-1093.
Ghosal, G., and J. Chen. 2013. DNA damage tolerance: a double-edged sword guarding the genome. Transl Cancer Res. 2:107-129.
Hoege, C., B. Pfander, G.L. Moldovan, G. Pyrowolakis, and S. Jentsch. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 419:135-141.
Houtgraaf, J.H., J. Versmissen, and W.J. van der Giessen. 2006. A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med. 7:165-172.
Jackson, S.P., and J. Bartek. 2009. The DNA-damage response in human biology and disease. Nature. 461:1071-1078.
Jamieson, E.R., and S.J. Lippard. 1999. Structure, Recognition, and Processing of Cisplatin-DNA Adducts. Chem Rev. 99:2467-2498.
Kastan, M.B., O. Onyekwere, D. Sidransky, B. Vogelstein, and R.W. Craig. 1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51:6304-6311.
Kastenhuber, E.R., and S.W. Lowe. 2017. Putting p53 in Context. Cell. 170:1062-1078.
Kee, Y., and A.D. D'Andrea. 2010. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes & development. 24:1680-1694.
Lane, D.P. 1992. Cancer. p53, guardian of the genome. Nature. 358:15-16.
Lengauer, C., K.W. Kinzler, and B. Vogelstein. 1998. Genetic instabilities in human cancers. Nature. 396:643-649.
Liu, B., R.E. Parsons, S.R. Hamilton, G.M. Petersen, H.T. Lynch, P. Watson, S. Markowitz, J.K. Willson, J. Green, A. de la Chapelle, and et al. 1994. hMSH2 mutations in hereditary nonpolyposis colorectal cancer kindreds. Cancer Res. 54:4590-4594.
Loeb, L.A. 1991. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51:3075-3079.
Loeb, L.A. 2001. A mutator phenotype in cancer. Cancer Res. 61:3230-3239.
McGranahan, N., and C. Swanton. 2017. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell. 168:613-628.
Mehta, A., and J.E. Haber. 2014. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol. 6:a016428.
Michl, J., J. Zimmer, and M. Tarsounas. 2016. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J. 35:909-923.
Mimitou, E.P., and L.S. Symington. 2011. DNA end resection--unraveling the tail. DNA repair. 10:344-348.
Minca, E.C., and D. Kowalski. 2010. Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Molecular cell. 38:649-661.
Mitelman, F., F. Mertens, and B. Johansson. 1997. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat Genet. 15 Spec No:417-474.
Miyashita, T., S. Krajewski, M. Krajewska, H.G. Wang, H.K. Lin, D.A. Liebermann, B. Hoffman, and J.C. Reed. 1994. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 9:1799-1805.
Nimonkar, A.V., J. Genschel, E. Kinoshita, P. Polaczek, J.L. Campbell, C. Wyman, P. Modrich, and S.C. Kowalczykowski. 2011. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes & development. 25:350-362.
Nowell, P.C. 1997. Genetic alterations in leukemias and lymphomas: impressive progress and continuing complexity. Cancer Genet Cytogenet. 94:13-19.
Pappas, K., J. Xu, S. Zairis, L. Resnick-Silverman, F. Abate, N. Steinbach, S. Ozturk, L.H. Saal, T. Su, P. Cheung, H. Schmidt, S. Aaronson, H. Hibshoosh, J. Manfredi, R. Rabadan, and R. Parsons. 2017. p53 Maintains Baseline Expression of Multiple Tumor Suppressor Genes. Mol Cancer Res. 15:1051-1062.
Petermann, E., and T. Helleday. 2010. Pathways of mammalian replication fork restart. Nature reviews. Molecular cell biology. 11:683-687.
San Filippo, J., P. Sung, and H. Klein. 2008. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 77:229-257.
Sandberg, A.A. 1986. Chromosome changes in bladder cancer: clinical and other correlations. Cancer Genet Cytogenet. 19:163-175.
Schmid, W., K. Scharer, T. Baumann, and G. Fanconi. 1965. [Chromosal fragility in familial panmyelopathy (Fanconi type)]. Schweiz Med Wochenschr. 95:1461-1464.
Schroeder, T.M., F. Anschutz, and A. Knopp. 1964. [Spontaneous chromosome aberrations in familial panmyelopathy]. Humangenetik. 1:194-196.
Schvartzman, J.M., P.H. Duijf, R. Sotillo, C. Coker, and R. Benezra. 2011. Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell. 19:701-714.
Sen, S. 2000. Aneuploidy and cancer. Curr Opin Oncol. 12:82-88.
Serrano, M., A.W. Lin, M.E. McCurrach, D. Beach, and S.W. Lowe. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 88:593-602.
Shay, J.W., O.M. Pereira-Smith, and W.E. Wright. 1991. A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res. 196:33-39.
Su, W.P., S.H. Hsu, C.K. Wu, S.B. Chang, Y.J. Lin, W.B. Yang, J.J. Hung, W.T. Chiu, S.F. Tzeng, Y.L. Tseng, J.Y. Chang, W.C. Su, and H. Liaw. 2014. Chronic treatment with cisplatin induces replication-dependent sister chromatid recombination to confer cisplatin-resistant phenotype in nasopharyngeal carcinoma. Oncotarget. 5:6323-6337.
Ulrich, H.D. 2005. The RAD6 pathway: control of DNA damage bypass and mutagenesis by ubiquitin and SUMO. Chembiochem. 6:1735-1743.
Villavicencio, E.H., D.O. Walterhouse, and P.M. Iannaccone. 2000. The sonic hedgehog-patched-gli pathway in human development and disease. Am J Hum Genet. 67:1047-1054.
Wang, W. 2007. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet. 8:735-748.
Ward, J.F. 1988. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 35:95-125.
Wylie, A., W.J. Lu, A. D'Brot, M. Buszczak, and J.M. Abrams. 2014. p53 activity is selectively licensed in the Drosophila stem cell compartment. Elife. 3:e01530.
Zhou, B.B., and S.J. Elledge. 2000. The DNA damage response: putting checkpoints in perspective. Nature. 408:433-439.