| 研究生: |
賴玫陵 Lai, Mei-Ling |
|---|---|
| 論文名稱: |
探討利莫那班調節古柯鹼相關記憶:性別差異和皮質酮以及內側前額葉皮質多巴胺受體所扮演的角色 Modulatory effects on rimonabant on cocaine-associated memory: roles of sex difference and corticosterone and medial prefrontal dopaminergic receptors |
| 指導教授: |
胡書榕
Hu, Shu-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 心理學系 Department of Psychology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 性別差異 、大麻素受體第一型 、古柯鹼場地制約偏好 、學習與記憶 、皮質酮 、內側前額葉皮質 、多巴胺受體 |
| 外文關鍵詞: | cannabinoid CB1 receptor, cocaine-induced conditioned place preference, corticosterone, medial prefrontal cortex, dopaminergic receptors |
| 相關次數: | 點閱:205 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於古柯鹼上癮之病患而言,古柯鹼、與藥物相關聯的線索或壓力,皆會造成其強烈的心理渴求以及求藥行為。因此,如何去除病患對古柯鹼的心理渴求進而避免復發,乃治療古柯鹼成癮最大的挑戰。本實驗室過去發現,在公鼠身上系統性給予或是在內側前額葉皮質微量注射利莫那班,對於低劑量和高劑量古柯鹼引發場地制約偏好記憶有雙向調節的效果。我們因此首先探討利莫那班調節古柯鹼記憶是否有性別差異存在,並透過大麻素受體第一型來達成。我們接著探討,利莫那班對公鼠之古柯鹼記憶調節效果,是否藉由皮質酮或是內側前額葉皮質之多巴胺受體第一型和第二型來達成。研究結果發現,利莫那班對高劑量古柯鹼(20 mg/kg)的場地制約偏好之損害效果只存在於公鼠上,且大麻素受體第一型參與其中,而此效果在母鼠身上不存在。令人驚奇的是,利莫那班同時損害野生型公鼠以及大麻素受體第一型基因剃除的公鼠在極高劑量古柯鹼(40 mg/kg)之記憶,因此可能有其他機制參與其中。極高劑量古柯鹼(40 mg/kg)施打於予母鼠身上,很不幸地造成母鼠70%的死亡率。我們接著發現,單獨給予利莫那班或古柯鹼(10, 20 mg/kg)皆會促進皮質酮的分泌,然而利莫那班僅再次提升10 mg/kg 古柯鹼所促進的皮質酮量,對於20 mg/kg古柯鹼所增加的皮質酮毫無影響。此外,利莫那班對低或高劑量(10, 20 mg/kg)古柯鹼記憶之雙向調節作用在去除腎上腺之公鼠身上完全消失,此現象與皮質酮量在去除腎上腺後無法被藥物改變之現象相互呼應。最後,系統性或在內側前額葉皮質給予多巴胺受體第一型或第二型拮抗劑皆損害利莫那班對低劑量古柯鹼記憶之促進效果,表示內側前額葉皮質得的多巴胺受體第一型和第二型皆參與在利莫那班調節低劑量古柯鹼之相關記憶。
Goal of this study
We aimed to investigate the cannabinoid CB1 receptors and corticosterone and the dopaminergic D1 and D2 receptors mechanisms underlying the bidirectional effects of rimonabant on cocaine-induced CPP.
Methods
We used conditioned place preference to test the effects of rimonabant on cocaine-
associated memory. We also conducted adrenalectomy and ELISA to test
corticosterone level. Stereotaxic surgery is used for drug induction into mPFC.
Western blotting was used to quantify the protein expression.
Result
We found that the effect of rimonabant on 20 mg/kg cocaine-induced CPP exists in male mice and is mediated by CB1 receptors, but not in female mice, and rimonabant impairs 40 mg/kg cocaine-induced CPP memory in both wild-type and CB1 knockout male mice. Next, administration of rimonabant or cocaine (10 or 20 mg/kg) alone increased corticosterone. However, rimonabant only potentiates 10 mg/kg cocaine increase of corticosterone, but not that of 20 mg/kg cocaine. Moreover, rimonabant’s effects on low- and high-dose cocaine CPP are abolished by ADX, which is correlated with blunted corticosterone level following ADX. Finally, systemic or intra-mPFC administration of the D1 and D2 antagonists impaired the facilitating effect of rimonabant on memory consolidation of 10 mg/kg cocaine-induced CPP. These results indicate that both D1 and D2 receptors in the mPFC are involved in the rimonabant’s effect on cocaine-associated memory.
Álvaro-Bartolomé, M., &García-Sevilla, J. A. (2013). Dysregulation of cannabinoid CB1 receptor and associated signaling networks in brains of cocaine addicts and cocaine-treated rodents. Neuroscience, 247, 294–308.
Anderson, S. M., Schmidt, H. D., &Pierce, R. C. (2006). Administration of the D2 dopamine receptor antagonist sulpiride into the shell, but not the core, of the nucleus accumbens attenuates cocaine priming-induced reinstatement of drug seeking. Neuropsychopharmacology, 31, 1452–1461.
Becker, J. B., &Hu, M. (2008). Sex differences in drug abuse. Frontiers in Neuroendocrinology, 29, 36–47.
Brinks, V., van derMark, M. H., deKloet, E. R., &Oitzl, M. S. (2007). Differential MR/GR activation in mice results in emotional states beneficial or impairing for cognition. Neural Plasticity, 2007. doi:10.1155/2007/90163
Burgos-Robles, A., Vidal-Gonzalez, I., &Quirk, G. J. (2009). Sustained Conditioned Responses in Prelimbic Prefrontal Neurons Are Correlated with Fear Expression and Extinction Failure. Journal of Neuroscience, 29, 8474–8482.
Butts, K. A., &Phillips, A. G. (2013). Glucocorticoid receptors in the prefrontal cortex regulate dopamine efflux to stress via descending glutamatergic feedback to the ventral tegmental area. International Journal of Neuropsychopharmacology, 16, 1799–1807.
Cervo, L., &Samanin, R. (1996). Effects of dopaminergic and glutamatergic receptor antagonists on the establishment and expression of conditioned locomotion to cocaine in rats. Brain Research, 731, 31–38.
Chaperon, F., Soubrié, P., Puech, A. J., &Thiébot, M. H. (1998). Involvement of central cannabinoid (CB1) receptors in the establishment of place conditioning in rats. Psychopharmacology, 135, 324–332.
Cippitelli, A., Bilbao, A., Hansson, A. C., DelArco, I., Sommer, W., Heilig, M., …Ciccocioppo, R. (2005). Cannabinoid CB1 receptor antagonism reduces conditioned reinstatement of ethanol‐seeking behavior in rats. European Journal of Neuroscience, 21, 2243–2251.
DeJong, I. E. M., Steenbergen, P. J., &DeKloet, E. R. (2009). Behavioral sensitization to cocaine: Cooperation between glucocorticoids and epinephrine. Psychopharmacology, 204, 693–703.
DeVries, T. J., Shaham, Y., Homberg, J. R., Crombag, H., Schuurman, K., Dieben, J., …Schoffelmeer, A. N. M. (2001). A cannabinoid mechanism in relapse to cocaine seeking. Nat Med, 7, 1151–1154.
Devane, W. A., Hanus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Griffin, G., …Mechoulam, R. (1992). Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 258, 1946–1949.
Fattore, L., Spano, M. S., Altea, S., Fadda, P., &Fratta, W. (2010). Drug‐and cue‐induced reinstatement of cannabinoid‐seeking behaviour in male and female rats: influence of ovarian hormones. British Journal of Pharmacology, 160, 724–735.
Galici, R., Pechnick, R. N., Poland, R. E., &France, C. P. (2000). Comparison of noncontingent versus contingent cocaine administration on plasma corticosterone levels in rats. European Journal of Pharmacology, 387, 59–62.
Goeders, N. E. (2002). Stress and Cocaine Addiction. Journal of Pharmacology and Experimental Therapeutics, 301, 785–789.
Goeders, N. E., Dworkin, S. I., &Smith, J. E. (1986). Neuropharmacological assessment of cocaine self-administration into the medical prefrontal cortex. Pharmacological Biochemical Behavior, 24, 1429.
Gold, P. E., &vanBuskirk, R. (1978). Posttraining brain norepinephrine concentrations: Correlation with retention performance of avoidance training and with peripheral epinephrine modulation of memory processing. Behavioral Biology, 23, 509–520.
Goldstein, R. Z., &Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry, 159, 1642–1652.
Granon, S., Passetti, F., Thomas, K. L., Dalley, J. W., Everitt, B. J., &Robbins, T. W. (2000). Enhanced and Impaired Attentional Performance After Infusion of D1 Dopaminergic Receptor Agents into Rat Prefrontal Cortex, 20, 1208–1215.
Hikida, T., Yawata, S., Yamaguchi, T., Danjo, T., Sasaoka, T., Wang, Y., &Nakanishi, S. (2013). Pathway-specific modulation of nucleus accumbens in reward and aversive behavior via selective transmitter receptors. Proceedings of the National Academy of Sciences, 110, 342–347.
Hu, M., Crombag, H. S., Robinson, T. E., &Becker, J. B. (2004). Biological basis of sex differences in the propensity to self-administer cocaine. Neuropsychopharmacology, 29, 81–85.
Hu, S. S. (2016). Involvement of TRPV1 in the Olfactory Bulb in Rimonabant-Induced Olfactory Discrimination Deficit. Chin J Physiol, 59, 21–32.
Hu, S. S., Liu, Y. W., &Yu, L. (2015). Medial prefrontal cannabinoid CB1 receptors modulate consolidation and extinction of cocaine-associated memory in mice. Psychopharmacology (Berl), 232, 1803–1815.
Kaphingst, K. A., Persky, S., &Lachance, C. (2010). NIH Public Access, 14, 384–399.
Laurent, V., &Westbrook, R. F. (2009). Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction. Learning & Memory, 16, 520–529.
LeFoll, B., &Goldberg, S. R. (2004). Rimonabant, a CB1 antagonist, blocks nicotine-conditioned place preferences. Neuroreport, 15, 2139–2143.
Lin, H.-C., Mao, S.-C., Su, C.-L., &Gean, P.-W. (2009). The Role of Prefrontal Cortex CB1 Receptors in the Modulation of Fear Memory. Cerebral Cortex, 19, 165–175.
Lin, K. Y., Cherng, C. G., Yang, F. R., Lin, L. C., Lu, R. B., &Yu, L. (2011). Memantine abolishes the formation of cocaine-induced conditioned place preference possibly via its IL-6-modulating effect in medial prefrontal cortex. Behav Brain Res, 220, 126–131.
Liu, K., &Steketee, J. D. (2011). Repeated exposure to cocaine alters medial prefrontal cortex dopamine D2-like receptor modulation of glutamate and dopamine neurotransmission within the mesocorticolimbic system. Journal of Neurochemistry, 119, 332–341.
Lynch, W. J., Roth, M. E., Mickelberg, J. L., &Carroll, M. E. (2001). Role of estrogen in the acquisition of intravenously self-administered cocaine in female rats. Pharmacology Biochemistry and Behavior, 68, 641–646.
Marinelli, M., Piazza, P.V, Deroche, V., Maccari, S., LeMoal, M., &Simon, H. (1994). Corticosterone circadian secretion differentially facilitates dopamine-mediated psychomotor effect of cocaine and morphine. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 14, 2724–2731.
Martin, M., Ledent, C., Parmentier, M., Maldonado, R., &Valverde, O. (2000a). Cocaine, but not morphine, induces conditioned place preference and sensitization to locomotor responses in CB1 knockout mice. European Journal of Neuroscience, 12, 4038–4046.
Martin, M., Ledent, C., Parmentier, M., Maldonado, R., &Valverde, O. (2000b). Cocaine, but not morphine, induces conditioned place preference and sensitization to locomotor responses in CB1 knockout mice. European Journal of Neuroscience, 12, 4038–4046.
Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A. R., …Compton, D. R. (1995). Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochemical Pharmacology, 50, 83–90.
Miszkiel, J., Mccreary, A. C., Papp, M., &Przegali, E. (2012). The effects of cannabinoid CB1 , CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats, 44. doi:10.1016/j.brainres.2012.01.030
Mitchell, M. J., &King, M. R. (2014). NIH Public Access, 124, 1–23.
Moldow, R. L., &Fischman, A. J. (1987). Cocaine induced secretion of ACTH, beta-endorphin, and corticosterone. Peptides, 8, 819–822.
Parsons, L. H., &Hurd, Y. L. (2015). Endocannabinoid signalling in reward and addiction. Nature Reviews Neuroscience, 16, 579–594.
Peterson, B. M., Martinez, L. A., Meisel, R. L., &Mermelstein, P. G. (2016). Estradiol impacts the endocannabinoid system in female rats to influence behavioral and structural responses to cocaine. Neuropharmacology, 110, 118–124.
Price, D. A., Owens, W. A., Gould, G. G., Frazer, A., Roberts, J. L., Daws, L. C., &Giuffrida, A. (2007). CB1-independent inhibition of dopamine transporter activity by cannabinoids in mouse dorsal striatum. Journal of Neurochemistry, 101, 389–396.
Przegaliński, E., Filip, M., Siwanowicz, J., &Nowak, E. (2000). Effect of adrenalectomy and corticosterone on cocaine-induced sensitization in rats. Journal of Physiology and Pharmacology.
Quirk, G. J., &Mueller, D. (2008). Neural mechanisms of extintion learning and retrieval. Neuropsychopharmacology, 33, 56–72.
Quirk, G. J., Russo, G. K., Barron, J. L., &Lebron, K. (2000). The role of ventromedial prefrontal cortex in the recovery of extinguished fear. Journal of Neuroscience, 20, 6225–6231.
Roy, D., Steyer, G. J., Gargesha, M., Stone, M. E., &Wilson, L. (2009). NIH Public Access, 292, 342–351.
Russo, S. J., Jenab, S., Fabian, S. J., Festa, E. D., Kemen, L. M., &Quinones-Jenab, V. (2003). Sex differences in the conditioned rewarding effects of cocaine. Brain Research, 970, 214–220.
Sanchez, C. J., Bailie, T. M., Wu, W. R., Li, N., &Sorg, B. A. (2003). Manipulation of dopamine D1-like receptor activation in the rat medial prefrontal cortex alters stress- and cocaine-induced reinstatement of conditioned place preference behavior. Neuroscience, 119, 497–505.
Schmidt, H. D., &Pierce, R. C. (2017). Cociane-induced neuroadaptins in glutamate transmission. Ann N Y Acad Sci, 35–75.
Selye, H. (1952). Allergy and the general adaptation syndrome. International Archives of Allergy and Immunology, 3, 267–278.
Shinohara, F., Kamii, H., Minami, M., &Kaneda, K. (1983). The Role of Dopaminergic Signaling in the Medial Prefrontal Cortex for the Expression of Cocaine-Induced Conditioned Place Preference in Rats. Biol. Pharm. Bull, 40, 1983–1989.
Smith, A. M., Floerke, V. A., &Thomas, A. K. (2016). Against Acute Stress, 354, 1046–1049.
St.Onge, J. R., Abhari, H., &Floresco, S. B. (2011). Dissociable Contributions by Prefrontal D1 and D2 Receptors to Risk-Based Decision Making. Journal of Neuroscience, 31, 8625–8633.
Steketee, J. D., &Walsh, T. J. (2005). Repeated injections of sulpiride into the medial prefrontal cortex induces sensitization to cocaine in rats. Psychopharmacology, 179, 753–760.
Tsigos, C., &Chrousos, G. P. (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 53, 865–871.
Wade, M. R., Degroot, A., &Nomikos, G. G. (2006a). Cannabinoid CB1 receptor antagonism modulates plasma corticosterone in rodents. European Journal of Pharmacology, 551, 162–167.
Wade, M. R., Degroot, A., &Nomikos, G. G. (2006b). Cannabinoid CB1 receptor antagonism modulates plasma corticosterone in rodents. European Journal of Pharmacology, 551, 162–167.
Xi, Z.-X., Gilbert, J. G., Peng, X.-Q., Pak, A. C., Li, X., &Gardner, E. L. (2006). Cannabinoid CB1 Receptor Antagonist AM251 Inhibits Cocaine-Primed Relapse in Rats: Role of Glutamate in the Nucleus Accumbens. Journal of Neuroscience, 26, 8531–8536.
校內:2023-12-31公開