| 研究生: |
張竣榮 Chang, Chun-Jung |
|---|---|
| 論文名稱: |
鋁摻雜氧化鋅奈米線之成長與光電特性之研究 Growth and Optoelectronic Properties of Al-doped ZnO Nanowire |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 鋁原子摻雜氧化鋅 |
| 外文關鍵詞: | AZO |
| 相關次數: | 點閱:46 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
至今,許多團隊的研究主軸都放在探討如何成長鋁原子摻雜氧化鋅奈米線的方法,例如脈衝激光沉積、熱蒸鍍法和水熱法,然而,尚未有團隊將鋁原子摻雜氧化鋅奈米線與元件作結合製作成光電元件,因此作者的第一部份將介紹我們如何合成鋁原子摻雜氧化鋅奈米線,並且探討其物性分析。而第二部份則為將鋁原子摻雜氧化鋅奈米線製作成光電元件並量測其光感、濕氣感測以及場發射特性。
第一部分是利用水熱法合成鋁原子摻雜氧化鋅奈米線,利用硝酸鋅(Zn(NO3)2)、HMTA粉末以及硝酸鋁(Al(NO3)3)調配水溶液作為之反應溶液,並且研究在不同成長溫度下所成長出的鋁原子摻雜氧化鋅奈米線作比較,結果溫度為80℃成長八小時為最佳成長參數,其成長之奈米線直徑與長度分別約為70nm、1.47um,成長方向為(0002)。並透過X-ray繞射儀了解其結晶性、TEM圖分析其表面結構,並進行霍爾量測測鋁原子摻雜氧化鋅奈米線的濃度、載子遷移率以及電阻率,同時去做光激發螢光量測。
第二部分首先敘述元件製作的部分,作者先在玻璃基板上濺鍍厚度約80奈米之氧化鋅薄膜當作晶種層,並且經過600℃通氧氣之環境下回火5分鐘,接著以metal mask之方式在薄膜上製作指叉狀金(100奈米)蕭特基電極,最後在元件表面成長鋁原子摻雜氧化鋅奈米線形成鋁原子摻雜氧化鋅奈米線元件。
元件製作完成後,作者量測元件的光感測、濕氣感測與場發射特性與氧化鋅奈米柱元件作為比較。
So far, many research group has been explored many method to grow AZO nanowires such as pulsed laser deposition, thermal evaporation method and hydrothermal method, however nobody combine AZO nanowire with optoelectronic device.
Therefore, the study was divided into two parts, first part will describe to us how the synthesis of AZO nanowires and explore its physical property analysis; second part will describe to us how fabricate AZO nanowire metal-semiconductor-metal (MSM) device and measure it.
In first part, we successful synthesized AZO nanowires on quartz substrate by hydrothermal method. In the portion of AZO nanowires syntheses, zinc nitrate [Zn(NO3)2], hexamethylenetetramine (HMTA) and aluminum nitrate [Al(NO3)3] were deemed the precursor. Use 80oC growth temperature and 8 hour growth time, we can get that diameter and length are 70 nm and 1.47 um, respectively and growth orientation (0002) of AZO nanowires.
The hydrothermal synthesized AZO nanowire presented good crystalline and optical characteristics through the measurement of XRD, SEM, TEM, Hall, PL and Raman.
In second part, the author performs the fabrication of the device. That ZnO film was as seed layer with thickness of 80 nm was grown on quartz substrate by RF sputtering system. After 600oC and 5 min annealing process in O2 ambient, the Au(100 nm) interdigital Schottky electrodes were formed with metal mask process. Finally, AZO nanowires were grown on the surface of the device. The AZO nanowires optoelectronic device was compare with ZnO nanorods optoelectronic device.
Chapter1
[1]Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998)
[2] D. W. Palmer, http://www.semiconductors.co.uk, 2002.06
[3]D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, M.Y. Shen, and T.Goto, Appl. Phys. Lett. 73, 1038(1998)
[4]D.C. Look, Mater. Sci. Eng. B, 80, 383 (2001)
[5]D.C. Look, D.C. Reynolds, J.W. Hemski, R.L. Jones, and J.R. Sizelove, Appl. Phy. Lett. 75, 811 (1999)
[6]A.Y. Polyakov et al., J. Appl. Phys. 94, 2895_2003_.
[7]S.O. Kucheyev, J.S. Williams, C. Jagadish, J.Zou, C.Evans, A.J. Nelson, and A.V. Hamza, Phys.Rev. B, 67, 094115_2003_.
[8] Xu Z Q, Deng H, Li Y, Guo Q H and Li Y R 2006 Mater. Res.Bull. 41 354
[9] Lee J H and Park B O 2003 Thin Solid Films 426 94
[10] Herrero J and Guillen C 2004 Thin Solid Films 451/452 630 [11] Basak D, Amin G, Mallik B, Paul G K and Sen S K 2003. Cryst. Growth 256 73
[12] Ohyama M, Kozuka H and Yoko T 1998 J. Am. Ceram. Soc.81 1622
[13] Yamamoto Y, Saito K, Takakashi K and Konagai M 2001 Sol.Energy Mater. Sol. Cells 65 125
[14] Sanchez-Juarez A, Tiburcio-Silver A, Oritz A, Zironi E P andRickards J 1998 Thin Solid Films 333 196
[15] Natsume Y and Sakata H 2002 Mater. Chem. Phys. 78 170
[16] Tang W and Cameron D C 1994 Thin Solid Films 238 83
[17] Bamiduro O, Mustafa H, Mundle R, Konda R B and radhan A-K 2007 Appl. Phys. Lett. 90 252108
[18] Kadam P, Agashe C and Mahamuni S J 2008 J. Appl. Phys.104 103501
[19] Wu K Y, Wang C C and Chen D H 2007 Nanotechnology18 305604
[20] Law M, Greene L E, Johnson J C, Saykally R and Yang P D2005 Nature Mater. 4 455
[21] Guo Z, Zhao D G, Liu Y H, Shen D H, Zhang J Y and Li B H2008 Appl. Phys. Lett. 93 163501
[22] Vayssieres L 2003 Adv. Mater. 15 464
[23] Greene L E, Law M, Goldberger J H, Kim F, Johnson J C,Zhang Y F, Saykally R and Yang P D 2003 Angew. Chem.Int. Edn 42 3031
[24] Sun Y, Riley J and Michael N R 2006 J. Phys. Chem. B110 15186
[25] Pasquier A D, Chen H H and Lu Y H 2006 Appl. Phys. Lett.89 253513
[26] Baxter J B and Aydil E S 2005 Appl. Phys. Lett. 86 053114
[27] Shisheng Lin, Haiping Tang, Zhizhen Ye, Haiping He, YuJia Zeng, Binghui Zhao, Liping Zhu. Materials Letters 62 (2008) 603–606
[28] M. Eskandari, V.Ahmadi, S.H.Ahmadi. Physica E 42 (2010) 1683–1686
[29] Ye Sun, Katherine E Addison and Michael N R Ashfold. Nanotechnology 18 (2007) 495601 (4pp)
[30] S.C. Navale, V. Rav, I.S. Mulla, S.W. Gosavi b, S.K. Kulkarni. Sensors and Actuators B 126 (2007) 382–386
[31] S.N. Bai, H.H. Tsai b, T.Y. Tseng. Thin Solid Films 516 (2007) 155–158
[32] D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, Inc., 1998.
[33] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981
[34] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. New York, Oxford University Press, 1988, ch. 1.
[35] W. Schottky, Naturewissenschaften, 26, 843, 1938
[36] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, 225, 1981.
[37] F. A. Padovani and R. Stratton, Solid State Electron, 9, 695, 1966
[38] C. R. Crowell and V. L. Rideout, Solid State Electron, 12, 89, 1969
[39] V. L. Rideout, Solid State Electron, 18, 541, 1975
[40] M. Marso, M. Horstmann, H. Hardtdegen, P. Kordos and H. Luth, Solid State Electron, 41, 25, 1997
[41] P. Bhattacharya, Semiconductor optoelectronic devices, 2nd ed., rentice Hall, 1997.
Chapter2
[1] J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press, New York, 131, 1978.
[2] S. I. Shah, “Handbook of Thin Film Process Technology”, Institute of Physics Pub., Bristol, UK, P.A3.0.1, 1995.
[3] S. M. Sze, “VLSI Technology”, McGraw-Hill, New York, 387, 1978.
[4] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars and J. S. Speck, Appl Phys Lett, 68, 643, 1996
[5] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, E. K. Suh, K. S. Nahm, H. J. Lee, D. H. Lim and A. Yoshikawa, Appl Phys Lett, 77, 2557, 2000
[6] Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou and D. J. Smith, Appl Phys Lett, 86, 2005
[7] http://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy
[8] H. Mimura: Display 13 (2007), No. 9, 56 [in Japanese].
[9] R. H. Fowler and L. W. Nordheim: Proc. R. Soc. London, Ser. A 119 (1928) 173.
Chapter3
[1] Q Ahsanulhaq, A Umar and Y B Hahn1, Nanotechnology 18 (2007) 115603 (7pp)
[2] Aleksandra B, Djuris ic and Yu Hang Leung J. small 2006, 2, No. 8-9, 944-961.
[3] Xu S, Lao C, Weintraub B and Wang Z L 2008 J. Mater. Res. 23 2072–7
[4] Lee Y, Zhang Y, Ng S L G, Kartawidjaja F C and Wang J 2009 J. Am. Ceram. Soc. 92 1940–5
Chapter4
[1] Xu S, Lao C, Weintraub B and Wang Z L 2008 J. Mater. Res. 23 2072–7
[2] Lee Y, Zhang Y, Ng S L G, Kartawidjaja F C and Wang J 2009 J. Am. Ceram. Soc. 92 1940–5
[3] Y. K. Su, S. M. Peng, L. W. Ji, C. Z. Wu, W. B. Cheng, and C. H. Liu, Langmuir 2010, 26(1), 603–606
[4] Zhang Y S, Yu K, Jiang D S, Zhu Z Q, Geng H R and Luo L Q 2005 Appl. Surf. Sci. 242 212–7
[5] H. Mimura: Display 13 (2007), No. 9, 56 [in Japanese]
[6] R. H. Fowler and L. W. Nordheim: Proc. R. Soc. London, Ser. A 119 (1928) 173.
[7] X. Bai, E.G. Wang, P. Gao, Z.L. Wang, Nano Lett. 3 (2003) 1147.
[8] Chih-Han Chen, Shoou-Jinn Chang, Sheng-Po Chang, Yao-Ching Tsai, I-Cherng Chen, Ting-Jen Hsueh, Cheng-Liang Hsu, Chemical Physics Letters 490 (2010) 176–179
校內:2017-07-03公開