簡易檢索 / 詳目顯示

研究生: 洪梓蔚
Hung, Tzu-Wei
論文名稱: 縱排雙圓柱三維流場數值模擬
Computation of 3-D Flow for Two aligned Circular Cylinders
指導教授: 賴泉基
Lai, Chan-Ji
呂珍謀
Leu, Jan-Mou
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 60
中文關鍵詞: 數值模擬圓柱
外文關鍵詞: computation, circular cylinders
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   當流體流經縱列雙圓柱障礙物時,由於分離及多重渦流的衍生在雙圓柱間受制與互動,因此較單圓柱周圍流場更為複雜。本文以FLUENT之商用軟體為工具,引用該軟體完整之雷諾應力模式(RSM)以模擬雙圓柱周圍三維紊流發展,以探討縱列雙圓柱流場在不同管間距及不同雷諾數下的流場特性。

      本文首用流場可視化實驗之數據驗證所建立之模式,進而以該模式模擬不同管徑特徵雷諾數 1000、5000( , 為漸近流速, 為圓管管徑)上下游兩圓柱圓心不同距離 2、3、4、5( 為兩圓柱圓心連線距)之流場。

      柱周馬蹄型渦流輪廓、柱後向上流、柱後尾跡渦流在本文數值模擬中,不論是在不同雷諾數或不同管間距下皆可以明顯模擬出來。兩圓柱間流場的主要特性為尾跡流、近液面渦流與底床馬蹄型渦流的交互作用。在不同管間距比的設定下可以觀察到兩圓柱間流場在管間距比2、3與4、5可分為兩個明顯區域,前者不受上游端尾跡流影響,後者受上游端尾跡流影響。另本文使用FLUENT模組對縱列雙圓柱排列的數值模擬研究,對於模式之設定及流場分析之經驗,亦可提供往後使用該模式者在進行數值模擬之參考。

     Because of the interaction of separation and multiple vortices between two circular cylinders, the flow through two aligned circular cylinders is more complex then that of a single one. This study attempts to resolve this complex flow field using the commercial software, FLUENT, since it accommodates the completely module of the Reynolds stress model (RSM) for three-dimensional turbulent flow computation. The distance to diameter ratio of the cylinder, and the Reynolds number based on approach velocity and D are the two main parameters that are concerned in the computations.

     The model constructed is verified by the experimental data from visualization techniques and the model is then used to simulate flows at Reynolds numbers of 1000 and 5000 and various ratios. The horseshoe vortex, up flow and wake flow existed between two circular cylinders can be simulated clearly at those Reynolds numbers and ratios.

     Computed results show that the flows through the aligned circular cylinders are the combinations of the wake flows, the vortex near the water surface and the horseshoe vortex rising from the bottom. The flow features show differently for ratios at 2, 3 and 4, 5. For the flows of the 2 and 3 ratios’, the wake flow generated from the front cylinder interfere with that at the behind, while the distance of the 4, 5 ratios is sufficient that the interferences are lesser than the 2, 3 cases. In addition to these results, the experience gained from the setting up of the computational model using FLUENT can also be a reference for other applications.

    中文摘要                   I 英文摘要                   II 謝誌                     III 目錄                     IV 表目錄                    VI 圖目錄                    VII 符號說明                   X 第一章 緒論                  1 1.1 研究動機                 1 1.2 研究目的                 2 1.3 本文組織                 3 第二章 文獻回顧               4 2.1 單一圓柱流場               4 2.2 雙圓柱流場                5 2.3 數值模擬                 6 第三章 紊流模式               7 3.1 雷諾應力模式               11 3.2 受邊壁限制的近壁紊流流動處理方法     15 第四章 數值模擬配置             19 4.1 數值模擬設定               19 4.2 實驗場與模擬配置             20 4.3 網格設計                 21 4.4 起始與邊界條件              23 4.5 本文雷諾應力模式所採用之常數值      23 4.6 驗証結果                 23 第五章 數值模擬結果             30 5.1 特徵雷諾數1000之流場           31 5.2 特徵雷諾數5000之流場           43 5.3 流場特性比較               55 第六章 結論與建議              56 6.1 結論                   56 6.2 建議                   57 參考文獻                   58

    1. Ahmed, F., “Flow and erosion around bridge piers”, PhD dissertation,Dept. of Civil Engineering, Univ. of Alberta, Edmonton, Alta., Canada, 1995.
    2. Breusers, H. N. C., G. Nicollet and H. W. Shen, “Local scour around cylindrical piers”, J. Hydraul. Res., vol. 15(3), pp. 211–252, 1977.
    3. Chen, C. J., “Prediction of turbulent flows and finite analytic numerical method”, 上海交通大學出版社, 1988。
    4. Dargahi, B., “Flow field and local scouring around a pier”, Bulletin No. TRITA-VBI-137, Hydraulic Laboratory, Royal Institute of Technology, Stockholm, Sweden., 1987.
    5. FLUENT, “FLUENT 6.1 User’s guide volume 1、2、3 ”, FLUENT., 2003.
    6. Helene, P. and M. Braza, “Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier-Stokes simulation”, J. Fluid Mech., vol. 365, pp. 23-88, 1998.
    7. Hosny, M. M., “Experimental study of local scour around circular bridge piers in cohesive soils”, PhD dissertation, Civil Engineering Dept., Colorado State Univ., Fort Collins, Colo., 1995.
    8. Jeon, D. and M. Gharib, “On the relationship between the vortex formation process and cylinder wake vortex patterns”, J. Fluid Mech., vol. 519, pp. 161–181, 2004.
    9. Klaus, A. H. and S. T. Chiang, “Computational fluid dynamics for engineers”, vol. 1, Engineering Education System., 1995.
    10. Lam, K., J.Y. Li and K.T. Chan, “Flow pattern and velocity field distribution of cross-flow around four cylinders in a square configuration at a low Reynolds number”, Journal of Fluids and Structures, vol. 17 , pp. 665–679, 2003.
    11. Laursen, E. M., and A. Toch, ‘‘Scour around bridge piers and abutments’’, Bull. No. 4, Iowa Highway Research Board, Ames, Iowa., 1956.
    12. Lighthill, M. J., “Drift”, J. Fluid Mech, vol. 1, pp. 31–53., 1956.
    13. Melville, B. W., “Local scour at bridge sites”, Rep. No. 117, Dept.of Civil Engineering, School of Engrg., Univ. of Auckland, Auckland,New Zealand., 1975.
    14. Munso, B. R., D. F. Young and T. H. Okiishi, “ Fundamentals of fluid mechanics” , Wiley, 2001.
    15. Nezu, I. and H. Nakagawa, “Turbulence in open-channel flows”, Balkema, 1993.
    16. Posey, C. J., “Why bridges fail in floods”, Civ. Eng. (N.Y.), vol. 19, pp. 42–90., 1949.
    17. Raudkivi, A. J., “ Loose boundary hydraulics”, 3rd Ed., Pergamon, New York., 1990.
    18. Rodi, W., “Comparison of LES and RANS calculations of flow around bluff bodies,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 69-71, pp. 55-75, 1997.
    19. Roshko, A., “On the wake and drag of bluff bodies,” Journal of Aeronautical Sciences, vol. 22, pp. 124-132, 1955.
    20. Sharman B., F. S. Lien and L. Davidson, “Numerical predictions of low Reynolds number flows over two tandem circular cylinders”, Int. J. Numer. Meth. Fluids, vol. 47, pp. 423–447, 2005.
    21. Shen, H. W., V. R. Schneider, and S. Karaki, “Local scour around bridge piers”, J. Hydraul. Div., Am. Soc. Civ. Eng., vol. 95(6), pp. 1919–1940, 1969.
    22. Singh, S. P. and S. Mittal, “Flow past a cylinder: Shear layer instability and drag crisis”, Int. J. Numer. Meth. Fluids, vol. 34, pp. 207–227, 2000.
    23. Squire, H. B., and K. G Winter, “The secondary flow in a cascade of airfoils of a nonuniform stream”, J. Aeronaut. Sci., vol. 18, pp. 271–277, 1951.
    24. Strouhal, V., “On one particular way of tone generation”, Ann. Phys. Chem., vol. 5, pp.216-251, 1878.
    25. Tarek, M. S., I. Jasim and M. H. Chaudhry, “Numerical modeling of three-dimensional flow field around circular piers”, Journal of Hydraulic Engineering, vol.130, No. 2, 2004.
    26. Toshiyuki, H., N. Keisuke and S. Atsushi, “Numerical realization for analysis of real flows by integrating computation and measurement”, Int. J. Numer. Meth. Fluids, vol. 47, pp. 543–559, 2005.
    27. Tseng, M. H., C. L. Yen and C. Song, ”Computation of three-dimensional flow around square and circular piers”, Int. J. Numer. Meth. Fluids, vol. 34, pp. 207–227, 2000.
    28. Von Kármán, T., “Uber den mechanismuss des widersstandes den ein bewegter korper in einen flussigkeit erfahrt”, Nachrichten der K. Gesellschaft der Wissenschaften zu Gottingen, pp. 547-556, 1912.
    29. Williamson, C. H. K., “The existence of two stages in the transition to three-dimensionality of a cylinder wake,” Physics in Fluids, vol. 31, pp. 3165-3168, 1988.
    30. Zdravkovich, M. M., “Review-review of flow Interference between two circular cylinders in various arrangements,” Journal of Fluids Engineering, vol. 99, pp. 618-633, 1977.
    31. 柯雅卿,“通用型影像量測系統應用研究”,國立成功大學水利及海洋工程學系碩士論文,2004。
    32. 劉家宏,“縱列雙方柱流場特性之實驗研究與數值分析”,國立中興大學機械工程學系博士論文,2001。
    33. 蕭慶章,“實用河川工程(上)(下)”,財團法人成大水利海洋研究發展文教基金會,2003。

    無法下載圖示 校內:2104-08-29公開
    校外:2104-08-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE