| 研究生: |
吳輔文 Wu, Fu-Wen |
|---|---|
| 論文名稱: |
研究錐狀光纖感測器偵測具螢光共振能量轉移的奈米粒子 Tapered Optical Fiber Sensors for FRET-Sensitive Nanoparticle Detection |
| 指導教授: |
郭昌恕
Kuo, Chang-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 螢光共振能量轉移 、錐狀光纖 、全光纖系統 |
| 外文關鍵詞: | FRET, tapered optical fiber, all fiber sensing |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
螢光共振能量轉移在此篇論文的錐狀光纖感測器的系統下被應用作標靶測量。多模錐狀光纖是採用熱熔拉法作製備,將其拉伸至錐狀區域最細處直徑為十微米以讓高模態的光逸出並與外界物質作接觸。接著再以(3-胺基丙基)三甲氧基矽烷之溶凝膠法對多模錐狀光纖的表面作胺基的改質,並探討 (3-胺基丙基)三甲氧基矽烷塗層的厚度對訊號偵測的影響,以得到更好的收訊。接著則會在經過胺基改質的光纖表面接上在螢光共振能量轉移裡扮演供體物質,一名為 Marina Blue 的螢光染料 (其激發波長為三百六十五奈米; 放光波長為四百六十五奈米)。再來則會引入一Y型的光纖藕合裝置以建立全光纖感測系統,其Y型構造的目的因為大部分的入射光源會在感測區作逸散並只有少部分能夠傳回系統內,從而降低入射光源對待測訊號的干擾。目標溶液的酸鹼度也經過調整以使帶有扮演螢光共振能量轉移受體 Chromeon 470 染料 (其激發波長為四百七十奈米; 放光波長為六百一十一奈米) 並具有羧酸化表面的奈米微粒能夠更容易地吸附上胺基改質的光纖表面。感測的進行是將經由Marina Blue染料改質的多模錐狀光纖浸入含有帶Chromeon 470 染料並具羧酸化表面的奈米微粒的溶夜裡,並觀察在由波長三百六十五奈米的入射光作內部激發所測得的螢光光譜裡經螢光共振能量轉移所激發的Chromeon 470的訊號。此錐狀光纖感測器的靈敏度為其偵測極限 9.655x105 個每微升至 1.105x105 個每微升,反應時間則為 9 至18 分鐘。
Förster resonance energy transfer (FRET) was introduced in the tapered optical fiber sensor for target detection. Multimode tapered optical fiber (MTOF) was obtained by heat-pulling method, and the diameter of its waist region was obtained to around 10 µm for the leak of higher-order modes light to make interaction with external substances. MTOF was further conducted by APS sol gel process in the aims of amino surface modification. The influence of APS coating thickness was also investigated for the better signal acquisition. Then, Marina blue fluorescence dye (λex: 365nm; λem: 465nm) which served as FRET donor would be conjugated on the amino modified fiber surface. A Y-shape combiner was adopted to construct the all fiber sensing system. The purpose of Y-shape design was to lower the interference of incident light, most of incident light would loss in sensing region and less would couple back. The pH value of target solutions were adjusted to obtain better adsorption of Chromeon 470 (λex: 470nm; λem: 611nm)-marked, surface carboxylated NPs which served as the FRET acceptor onto amino modified fiber surface. Detection was conducted by immersing Marina Blue functionalized MTOF into Chromeon 470-marked, surface carboxylated NPs contained solution and to observe the FRET induced Chromeon 470 signal in the fluorescent spectra collected via internal excitation by 365nm incident light. Sensitivity of the tapered optical fiber sensor is obtained with the detection limit of 9.655x105 /μl ~ 1.105x105 /μl, and the response time is within 9-18 min.
1. Maurer, R.D. and P.C. Schultz, Fused silica optical waveguide. 1972: US
2. Keck, D. and P. Schultz, Method of producing optical waveguide fibers. 1973: US.
3. Snitzer, E., H. Po, F. Hakimi, R. Tumminelli, and B.C. McCollum, DOUBLE CLAD, OFFSET CORE Nd FIBER LASER. 1988: p. PD5.
4. Li, Z.Y., Fabrication of an all-fiber sensor system and the application on bio-virus detection in National Cheng Kung University 2015.
5. Lee, P.Y., The Fabrication and Study on Fiber-Optic Biosensor Using Heating-Pulling Method, in National Cheng Kung University 2014.
6. Wade, S.A., S.F. Collins, and G.W. Baxter, Fluorescence intensity ratio technique for optical fiber point temperature sensing. Journal of Applied Physics, 2003. 94(8): p. 4743.
7. Rinaudo, P., I. Paya-Zaforteza, P. Calderón, and S. Sales, Experimental and analytical evaluation of the response time of high temperature fiber optic sensors. Sensors and Actuators A: Physical, 2016. 243: p. 167-174.
8. Liu, R.M., S.K. Babanajad, T. Taylor, and F. Ansari, Experimental study on structural defect detection by monitoring distributed dynamic strain. Smart Materials and Structures, 2015. 24(11): p. 115038.
9. Billon, A., J.-M. Hénault, M. Quiertant, F. Taillade, A. Khadour, R.-P. Martin, and K. Benzarti, Qualification of a distributed optical fiber sensor bonded to the surface of a concrete structure: a methodology to obtain quantitative strain measurements. Smart Materials and Structures, 2015. 24(11): p. 115001.
10. Bhatia, S., D. Risk, A. Pustam, T. Smith-Palmer, G. Burton, L. Melo, and P. Wild, Biofouling of an All-Optical Sensor for Seafloor Monitoring of Marine Carbon Capture and Storage Sites. Energy Procedia, 2014. 63: p. 3848-3852.
11. Kim, Y.-C., J. Cramer, T. Battaglia, J.A. Jordan, S.N. Banerji, W. Peng, L.L. Kegel, and K.S. Booksh, Investigation of in Situ Surface Plasmon Resonance Spectroscopy for Environmental Monitoring in and around Deep-Sea Hydrothermal Vents. Analytical Letters, 2013. 46(10): p. 1607-1617.
12. Ferguson, J.A., T.C. Boles, C.P. Adams, and D.R. Walt, A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat Biotechnol, 1996. 14(13): p. 1681-4.
13. Liu, X. and W. Tan, A Fiber-Optic Evanescent Wave DNA Biosensor Based on Novel Molecular Beacons. Analytical Chemistry, 1999. 71(22): p. 5054-5059.
14. Leung, A., P.M. Shankar, and R. Mutharasan, A review of fiber-optic biosensors. Sensors and Actuators B: Chemical, 2007. 125(2): p. 688-703.
15. Ahmad, M. and L.L. Hench, Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers. Biosens Bioelectron, 2005. 20(7): p. 1312-9.
16. Moar, P.N., S.T. Huntington, J. Katsifolis, L.W. Cahill, A. Roberts, and K.A. Nugent, Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors. Journal of Applied Physics, 1999. 85(7): p. 3395.
17. Khijwania, S.K. and B.D. Gupta, Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe. Optical and Quantum Electronics, 1999. 31(8): p. 625-636.
18. Khijwania, S.K. and B.D. Gupta, Maximum achievable sensitivity of the fiber optic evanescent field absorption sensor based on the U-shaped probe. Optics Communications, 2000. 175(1-3): p. 135-137.
19. Pilevar, S., C.C. Davis, and F. Portugal, Tapered Optical Fiber Sensor Using Near-Infrared Fluorophores To Assay Hybridization. Analytical Chemistry, 1998. 70(10): p. 2031-2037.
20. Bariáin, C., I.R. Matı́as, F.J. Arregui, and M. López-Amo, Optical fiber humidity sensor based on a tapered fiber coated with agarose gel. Sensors and Actuators B: Chemical, 2000. 69(1-2): p. 127-131.
21. Hench, L.L. and J.K. West, The sol-gel process. Chemical Reviews, 1990. 90(1): p. 33-72.
22. Brinker, C.J., Y. Lu, A. Sellinger, and H. Fan, Evaporation-Induced Self-Assembly: Nanostructures Made Easy. Advanced Materials, 1999. 11(7): p. 579-585.
23. Novak, B.M., Hybrid Nanocomposite Materials-between inorganic glasses and organic polymers. Advanced Materials, 1993. 5(6): p. 422-433.
24. Alothman, Z., A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 2012. 5(12): p. 2874-2902.
25. Osborne, J.H., Observations on chromate conversion coatings from a sol–gel perspective. Progress in Organic Coatings, 2001. 41(4): p. 280-286.
26. Rahimi, H., R. Mozaffarinia, and A. Hojjati Najafabadi, Corrosion and Wear Resistance Characterization of Environmentally Friendly Sol–gel Hybrid Nanocomposite Coating on AA5083. Journal of Materials Science & Technology, 2013. 29(7): p. 603-608.
27. van Ooij, W.J., D. Zhu, M. Stacy, A. Seth, T. Mugada, J. Gandhi, and P. Puomi, Corrosion protection properties of organofunctional silanes — An overview. Tsinghua Science and Technology, 2005. 10(6): p. 639-664.
28. Del Angel-López, D., M.A. Domínguez-Crespo, A.M. Torres-Huerta, A. Flores-Vela, J. Andraca-Adame, and H. Dorantes-Rosales, Analysis of degradation process during the incorporation of ZrO2:SiO2 ceramic nanostructures into polyurethane coatings for the corrosion protection of carbon steel. Journal of Materials Science, 2012. 48(3): p. 1067-1084.
29. Peng, S., W. Zhao, H. Li, Z. Zeng, Q. Xue, and X. Wu, The enhancement of benzotriazole on epoxy functionalized silica sol–gel coating for copper protection. Applied Surface Science, 2013. 276: p. 284-290.
30. Motte, C., M. Poelman, A. Roobroeck, M. Fedel, F. Deflorian, and M.G. Olivier, Improvement of corrosion protection offered to galvanized steel by incorporation of lanthanide modified nanoclays in silane layer. Progress in Organic Coatings, 2012. 74(2): p. 326-333.
31. Brusciotti, F., D.V. Snihirova, H. Xue, M.F. Montemor, S.V. Lamaka, and M.G.S. Ferreira, Hybrid epoxy–silane coatings for improved corrosion protection of Mg alloy. Corrosion Science, 2013. 67: p. 82-90.
32. Wolter, H. and W. Storch, A new silane precursor with reduced polymerization shrinkage. Journal of Sol-Gel Science and Technology, 1994. 2(1-3): p. 93-96.
33. Toskas, G., C. Cherif, R.D. Hund, E. Laourine, B. Mahltig, A. Fahmi, C. Heinemann, and T. Hanke, Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr Polym, 2013. 94(2): p. 713-22.
34. Besanger, T.R., R.J. Hodgson, J.R. Green, and J.D. Brennan, Immobilized enzyme reactor chromatography: optimization of protein retention and enzyme activity in monolithic silica stationary phases. Anal Chim Acta, 2006. 564(1): p. 106-15.
35. Islam, S., R. Rahman, Z. Othaman, S. Riaz, and S. Naseem, Synthesis and characterization of hybrid matrix with encapsulated organic sensing dyes for pH sensing application. Journal of Industrial and Engineering Chemistry, 2014. 20(6): p. 4408-4414.
36. Goncalves, H.M., A.J. Duarte, and J.C. Esteves da Silva, Optical fiber sensor for Hg(II) based on carbon dots. Biosens Bioelectron, 2010. 26(4): p. 1302-6.
37. Förster, T., Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik, 1948. 437(1-2): p. 55-75.
38. Zhang, C.-Y., H.-C. Yeh, M.T. Kuroki, and T.-H. Wang, Single-quantum-dot-based DNA nanosensor. Nature Materials, 2005. 4(11): p. 826-831.
39. Bagalkot, V., L. Zhang, E. Levy-Nissenbaum, S. Jon, P.W. Kantoff, R. Langer, and O.C. Farokhzad, Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett, 2007. 7(10): p. 3065-70.
40. Nagai, T., K. Ibata, E.S. Park, M. Kubota, K. Mikoshiba, and A. Miyawaki, A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol, 2002. 20(1): p. 87-90.
41. Rizzo, M.A., G.H. Springer, B. Granada, and D.W. Piston, An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol, 2004. 22(4): p. 445-9.
42. Cheng, K.M., Self-assembly and FRET of Dye-functionalizaed Janus Particles in National Cheng Kung University 2013.
43. Kasha, M., Characterization of electronic transitions in complex molecules. Discussions of the Faraday Society, 1950. 9: p. 14.
44. Schobel, U., H.-J. Egelhaaf, A. Brecht, D. Oelkrug, and G. Gauglitz, New Donor−Acceptor Pair for Fluorescent Immunoassays by Energy Transfer. Bioconjugate Chemistry, 1999. 10(6): p. 1107-1114.
45. Medintz, I.L., A.R. Clapp, H. Mattoussi, E.R. Goldman, B. Fisher, and J.M. Mauro, Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater, 2003. 2(9): p. 630-8.
46. Clapp, A.R., I.L. Medintz, J.M. Mauro, B.R. Fisher, M.G. Bawendi, and H. Mattoussi, Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc, 2004. 126(1): p. 301-10.
47. Kurokawa, K., A. Takaya, K. Terai, A. Fujioka, and M. Matsuda, Visualizing the Signal Transduction Pathways in Living Cells with GFP-Based FRET Probes. Acta Histochemica Et Cytochemica, 2004. 37(6): p. 347-355.
48. Terai, K. and M. Matsuda, Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO Rep, 2005. 6(3): p. 251-5.
49. Ryan, S.T., J. Del Barrio, I. Ghosh, F. Biedermann, A.I. Lazar, Y. Lan, R.J. Coulston, W.M. Nau, and O.A. Scherman, Efficient host-guest energy transfer in polycationic cyclophane-perylene diimide complexes in water. J Am Chem Soc, 2014. 136(25): p. 9053-60.
50. Day, R.N. and M.W. Davidson, Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells. Bioessays, 2012. 34(5): p. 341-50.
51. Pfeiffer, H.G. and H.A. Liebhafsky, The origins of Beer's law. Journal of Chemical Education, 1951. 28(3): p. 123.
52. Liang, T.R., Reversible FRET Induced by the Self-assembly of Dye-functionalized Janus particles in National Cheng Kung University 2014.
53. JabŁOŃSki, A., Efficiency of Anti-Stokes Fluorescence in Dyes. Nature, 1933. 131(3319): p. 839-840.
54. Udenfriend, S., S. Stein, P. Bohlen, W. Dairman, W. Leimgruber, and M. Weigele, Fluorescamine: A Reagent for Assay of Amino Acids, Peptides, Proteins, and Primary Amines in the Picomole Range. Science, 1972. 178(4063): p. 871-872.
55. Lai, Y.H., A Novel Biosensor Platform Based on the Self-assembly of Submicron Janus Particles in National Cheng Kung University 2016.
56. Hanafi-Bagby, D., P.A.E. Piunno, C.C. Wust, and U.J. Krull, Concentration dependence of a thiazole orange derivative that is used to determine nucleic acid hybridization by an optical biosensor. Analytica Chimica Acta, 2000. 411(1-2): p. 19-30.
57. Miller, J., A. Castaneda, K.H. Lee, M. Sanchez, A. Ortiz, E. Almaz, Z.T. Almaz, S. Murinda, W.J. Lin, and E. Salik, Biconically tapered fiber optic probes for rapid label-free immunoassays. Biosensors (Basel), 2015. 5(2): p. 158-71.
58. Goldstein, B., D. Coombs, X. He, A.R. Pineda, and C. Wofsy, The influence of transport on the kinetics of binding to surface receptors: application to cells and BIAcore. Journal of Molecular Recognition, 1999. 12(5): p. 293-299.
59. Soteropulos, C.E., H.K. Hunt, and A.M. Armani, Determination of binding kinetics using whispering gallery mode microcavities. Appl Phys Lett, 2011. 99(10): p. 103703-1037033.
60. Chang, H., L. Tang, Y. Wang, J. Jiang, and J. Li, Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection. Analytical Chemistry, 2010. 82(6): p. 2341-2346.
61. Yao, B.C., Y. Wu, C.B. Yu, J.R. He, Y.J. Rao, Y. Gong, F. Fu, Y.F. Chen, and Y.R. Li, Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection. Sci Rep, 2016. 6: p. 23706.
62. Sanders, M., Y. Lin, J. Wei, T. Bono, and R.G. Lindquist, An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens Bioelectron, 2014. 61: p. 95-101.
校內:2023-02-23公開