| 研究生: |
曾建霖 Tseng, Chien-Lin |
|---|---|
| 論文名稱: |
乙醇胺在二氧化鈦粉末表面上的吸附與反應研究 Adsorption and Reactions of Ethanolamine on Powdered TiO2 |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 光化學 、吸附 、乙醇胺 、傅式轉換紅外光譜 、二氧化鈦 |
| 外文關鍵詞: | FTIR, TiO2, Photochemistry, Adsorption, Ethanolamine |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乙醇胺的鹼性溶液在石油工業上常被用來吸收酸氣分子,如CO2和H2S。但乙醇胺的揮發逸出會造成環境的汙染。本論文於氣-固系統中利用原位(in-situ)傅式轉換紅外光譜(FTIR)研究乙醇胺在二氧化鈦上的吸附與光化學反應。因為乙醇胺同時具有NH2和OH兩個官能基,我們也同時研究正丙胺和正丙醇的吸附。比較這些分子的吸附紅外光譜圖後,我們發現乙醇胺在35 oC的溫度下是以分子性吸附與分解性吸附NH2CH2CH2O(a)在二氧化鈦表面。300 oC時,分子性吸附的乙醇胺會脫附,二氧化鈦表面上只存在NH2CH2CH2O(a)。乙醇胺/二氧化鈦在氧氣存在下,會光分解可能生成NCO(a)、HCOO(a)、NO3-(a)、HCONH(a)、NH2CH2CHO(a)、OCH2CH2OH(a)、NH2CH2COO(a)、CO2(g) 等物種生成。在高吸附量的情形下,照光反應4小時約~5 % 的乙醇胺產生光反應。我們也探討了這些產物的可能反應路徑。
Ethanolamine in alkaline solutions are often used as absorber to remove acid gas, such as CO2 and H2S in petrochemical plants. However, the evaporation of ethanolamine would cause environmental problems. The adsorption and photochemistry of ethanolamine on TiO2 have been investigated by Fourier-transformed infrared spectroscopy in an in-situ gas-solid interaction system. Since ethanolamine possesses the functional groups of NH2 and OH. The adsorption of n-propylamine and n-propanol on TiO2 is also studied. The comparison of the infrared spectra measured after the adsorption of these three molecules shows that ethanolamine is adsorbed molecularly and dissociatively to form NH2CH2CH2O(a) on TiO2 surface at 35 oC. Upon increasing the temperature to 300 oC, ethanolamine molecules are desorbed and the surface is covered with NH2CH2CH2O(a). NCO(a), HCOO(a), NO3-(a), HCONH(a), NH2CH2CHO(a), OCH2CH2OH(a), NH2CH2COO(a), CO2(g) are possibly generated in the UV irradiation of ethanolamine/TiO2 in the presence of O2. Approximately ~5 % ethanolamine molecules at high coverage decompose under 4 hr photoirradiation. Possible reaction pathways for the photoproducts are discussed.
1. M. K. Nowotny, L. R. Sheppard, T. Bak, and J. Nowotny, “Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts” J. Phys. Chem. C 112, 5275 2008.
2. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode” Nature 37, 238, 1972.
3. A. L. Linsebigler, G. Lu, and J. T. Yates, Jr. “ Photocatalysis on TiO2 Surface: Principles, Mechanisms, and Selected Results” Chem. Rev. 95, 735, 1995.
4. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemannt, “Environmental Applications of Semiconductor Photocatalysis” Chem. Rev. 95, 69-96, 1995.
5. A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis” Photochem. Photobiol. C, Photochem. Rev. 1, 1–21, 2000.
6. T. Ban, S. Kondoh, Y. Ohya, and Y. Takahashi, “Degradation reaction of monoethanolamine using TS-1 zeolite as a photocatalyst” Phys. Chem. Chem. Phys. 1, 5745, 1999.
7. 黃榮茂、王禹文、林聖富、楊得仁, 化工化學百科辭典 曉圓出版社 台北市 389頁 1987.
8. S. Freguia and G. T. Rochelle “Modeling of CO2 Capture by Aqueous Monoethanolamine” A.I.C.h.E. 49, 1676, 2003.
9. G. S. Goff and G. T. Rochelle, “Oxidation Inhibitors for Copper and Iron Catalyzed Degradation of Monoethanolamine in CO2 Capture Processes” Ind. Eng. Chem. Res. 45, 2513-2521, 2006.
10. O. Leal, C. Bolivar, C. Ovalles, J. J. Garcia, and Y. Espidel “Reversible adsorption of carbon dioxide on amine surface-bonded silica gel” Inorganica Chimica Acta 240, 183-189, 1995.
11. B. D. Bhide and S. A. Stern “Membrane processes for the removal of acid gases from natural gas. I. Process configurations and optimization of operating conditions” J. Membr. Sci. 81, 209, 1993.
12. J. Fan and J. T. Yates, Jr. “Infrared Study of the Oxidation of Hexafluoropropene on TiO2” J. Phys. Chem. 98, 10621, 1994.
13. C.-C. Chuang, J.-S. Shiu, and J.-L. Lin “Interaction of hydrazine and ammonia with TiO2” Phys. Chem. Chem. Phys. 2, 2629, 2000.
14. C. N. Rusu and J. T. Yates, Jr. “Photochemistry of NO Chemisorbed on TiO2(110) and TiO2 Powders” J. Phys. Chem. B 104, 1729, 2000.
15. C. F. P. Silva, M. L. T. S. Duarte, and R. Fausto “A concerted SCF-MO ab initio and vibrational spectroscopic study of the conformational isomerism in 2-aminoethanol” Journal of Molecular Structure 482–483, 591–599, 1999.
16. C. Fauquet, P. Dubot, L. Minel, M.-G. Barthes-Labrousse, M. Rei Vilar, and M. Villatte “Adsorption of monoethanolamine on clean, oxidized and hydroxylated aluminium surfaces: a model for amine-cured epoxy/aluminium interfaces” Applied Surface Science 81, 435-441, 1994.
17. Y.-S. Lin, C.-Y. Wang, C.-M. Yang, J.-S. Lin, C.-W. Kuo, and J.-L. Lin “Surface Chemistry of Monoethanolamine on Oxygen-Precovered Cu(100)” J. Phys. Chem. C 112, 8304–8310, 2008.
18. S. D. Williams and K. W. Hipps “The Adsorption of 1-Propanol, 1-Propylamine, and 3-Amino-1-Propanol on Plasma-Grown Aluminum Oxides; Comparison with Propanoic Acid and -Alanine” J. Catal. 78, 96-110, 1982.
19. L. A. E. B. D. Carvalho, A. M. A. D. Costa, M. L. Duarte, and J. J. C. Teixeira-Dias “Conformational studies of n-propylamine by combined ab initio MO calaulations and Raman spectroscopy” Spectrochimica Acta. 44A, 723-732, 1988.
20. B. C. Wiegand, P. Uvdal, J. G. Serafin, and C. M. Friend “Competition between C-O and 1-C-H Bond Scission during Deoxygenation: The Reactions of 1-Propanol on Mo(110)” J. Phys. Chem. 96, 5063-5069, 1992.
21. W.-C. Wu, C.-C. Chuang, and J.-L. Lin “Bonding Geometry and Reactivity of Methoxy and Ethoxy Groups Adsorbed on Powdered TiO2” J. Phys. Chem. B 104, 8719-8724, 2000.
22. L.-F. Liao, W.-C. Wu, C.-C. Chuang, and J.-L. Lin “FTIR Study of Adsorption and Reactions of Methylamine on Powdered TiO2” J. Phys. Chem. B 105, 5928-5934, 2001.
23. D. H. Kim, K. H. Kim, W. H. Jo, and J. Kim “An analysis of interfacial characteristics between amine-functionalized polystyrene/copper and between hydroxyl-functionalized polystyrene/copper” Macromol. Chem. Phys. 201, 2699-2704, 2000.
24. T. Kantoh and S. Okazaki “Nature of Acid Sites on TiO2, and Their Reactions with OH and NH2 Groups of 3-Amino-1-propanol, 1-Propanol, and 1-Propylamine” Bull. Chem. Soc. Jpn. 54, 3259-3264, 1981.
25. S. Horikoshi, N. Watanabe, M. Mukae, H. Hidaka, and N. Serpone “Mechanistic examination of the titania photocatalyzed oxidation of ethanolamines” New J. Chem. 25, 999-1005, 2001.
26. M. Klare, J. Scheen, K. Vogelsang, H. Jacobs, and J. A. C. Broekaert “Degradation of short-chain alkyl- and alkanolamines by TiO2- and Pt/TiO2-assisted photocatalysis” Chemosphere 41, 353-362, 2000.
27. F. Soiymosi, L. Völgyesi, and J. Rasko Z. Phys. Chem. 120, 79, 1980.
28. F. Solymosi, L. Völgyesi and J. Sárkány “The effect of the support on the formation and stability of surface isocyanate on platinum” J. Catal. 54, 336, 1978.
29. F. Solymosi, J. Sárkány, and A. Schauer “Study of the formation of isocyanate surface complexes on Pt/Al2O3 catalysts” J. Catal. 46, 297, 1977.
30. W.-C. Wu, L.-F. Liao, C.-C. Chuang, and J.-L. Lin “Adsorption and Photooxidation of Formamide on Powdered TiO2” J. Catal. 195, 416-419, 2000.
31. J. Zhuang, C. N. Rusu, and J. T. Yates, Jr. “Adsorption and Photooxidation of CH3CN on TiO2” J. Phys. Chem. B 103, 6957-6967, 1999.
32. L.-F. Liao, C.-F. Lien, D.-L. Shieh, M.-T. Chen, and J.-L, Lin “FTIR Study of Adsorption and Photoassisted Oxygen Isotopic Exchange of Carbon Monoxide, Carbon Dioxide, Carbonate, and Formate on TiO2” J. Phys. Chem. B 106, 11240-11245, 2002.
33. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley & Sons, New York, p 65, 2009.
34. K. Hadjiivanov, V. Bushev, M. Kantcheva, and D. Klissurski “Infrared Spectroscopy Study of Species Arising during NO2 Adsorption on TiO2 (Anatase)” Langmuir 10, 464-471, 1994.
35. W.-C. Wu, S.-J. Yang, C.-H. Ho, Y.-S. Lin, L.-F. Liao, and J.-L. Lin “Crotonaldehyde Formation from Decomposition of ICH2CH2OH on Powdered TiO2” J. Phys. Chem. B 110, 9627-9631, 2006.
36. C.-F. Lien, C.-H. Ho, C.-Y. Shieh, C.-L. Tseng, and J.-L. Lin “FTIR Study of Adsorption and Reactions of Ethylene Oxide on Powdered TiO2” J. Phys. Chem. C 112, 8365-8371, 2006.
37. J. E. Rekoske and M. A. Barteau “Competition between Acetaldehyde and Crotonaldehyde during Adsorption and Reaction on Anatase and Rutile Titanium Dioxide” Langmuir 15, 2061-2070, 1999.
38. C.-H. Ho, C.-Y. Shieh, C.-L. Tseng, Y.-K. Chen, and J.-L. Lin “Decomposition pathways of glycolic acid on titanium dioxide” J. Catal. 261, 150-157, 2009.
39. J. C. S. Wong, A. Linsebigler, G. Lu, J. Fan, and J. T. Yates, Jr. “Photooxidation of CH3Cl on TiO2(110) Single Crystal and Powdered TiO2 Surfaces” J. Phys. Chem. 99, 335-344, 1995.