簡易檢索 / 詳目顯示

研究生: 陳文賢
Chen, Wen-Hsien
論文名稱: 微量鎂金屬摻雜對磁性穿隧接面絕緣層結構與磁電性之研究
Magnesium doping effects on magnetic and electrical transport in MgO based magnetic tunnel junctions
指導教授: 黃榮俊
Huang, Jung-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 86
中文關鍵詞: 磁性穿隧接面複數電容頻譜阻抗頻譜
外文關鍵詞: magnetic tunnel junctions, complex capacitance, impedance
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用高頻電容及阻抗頻譜來探討氧化鎂系統磁性穿隧接面之磁電傳輸行為,其目的在同時討論絕緣層紋理和界面品質對穿隧磁阻變化之影響。摻雜4Å金屬鎂於下電極層鈷鐵合金及絕緣層氧化鎂的磁性穿隧接面樣品有助於提升穿隧磁阻率(0.76%到4%),利用高頻電容及阻抗頻譜討論絕緣層紋理氧化鎂和絕緣層及電極層間界面的介電貢獻,並且利用X-ray反射率和高解析電子顯微鏡來檢測絕緣層及界面問題。
    摻雜4Å金屬鎂於下電極層鈷鐵合金及絕緣層氧化鎂之間有助提升絕緣層氧化鎂遲豫頻率和減少界面缺陷,由X-ray反射率和高解析電子顯微鏡也可以佐證高頻界面部分結果。故摻雜4Å金屬鎂於氧化鎂系統磁性穿隧接面中絕緣層和下電極層之間可有效提升磁阻率,主要原因是來自於改善氧化鎂絕緣層和界面條件。

    In this thesis, we have systematically investigated the electrical- and magneto-transport properties in MgO-based magnetic tunnel junctions (MTJs), due to Mg doping at the bottom interface, by complex- capacitance (CC) and –impedance (CI) technique. We focus on the sample with/without inserting 4Å Mg discontinuous layer between the bottom CoFe electrode layer and the MgO barrier layer. The tunnel magnetoresistance (TMR) of MTJs with Mg doping shows a apparent increase to ~4%, compared to only 0.76% TMR ratio of MTJs without Mg doping. The corresponding CI and CC spectra with/without Mg doping MTJs are also measured and analyzed by the equivalent circuit model. The analysis indicates inserting 4Å Mg discontinuous layer between the bottom CoFe layer and the MgO barrier layer not only can improve barrier quality, but also decrease interfacial defects. Furthermore, we also use the X-ray reflectivity and high-resolution transmission electron microscopy to confirm the improvement of barrier texture and interfacial conditions. Therefore, we conclude the enhancement of TMR ratio due to 4 Å Mg doping could be related to the improvement of the bottom interfacial smoothness as well as the increase of textured MgO.

    第一章 序論 1 1-1磁穿隧接面簡介 1 1-2磁穿隧介面歷史 3 1-3論文回顧 6 1-3-1 氧化鋁磁穿隧接面回顧 6 1-3-2 氧化鎂磁穿隧接面回顧 8 1-3-3 金屬鎂摻雜於薄氧化鎂磁穿隧接面回顧 15 1-3-4 電容及阻抗頻譜分析磁穿隧接面回顧 20 1-4動機 23 第二章 理論介紹 26 2-1 磁阻介紹 26 2-2 磁性穿隧接面理論 29 2-3 高頻理論 31 2-3-1 Debye色散理論 31 2-3-2等效電路介紹 34 2-3-3複數電容頻譜之物理意義 36 2-3-4阻抗頻譜之物理意義 37 第三章 實驗儀器介紹 39 3-1 離子束濺鍍系統 39 3-2 金屬光罩(mask) 44 3-3 量測儀器 46 3-3-1 磁阻量測 46 3-3-2高頻量測儀器 47 3-3-3 X-ray反射率 49 3-3-4高解析穿隧是電子顯微鏡 50 3-4 實驗流程 51 3-4-1基版清洗 51 3-4-2樣品成長 51 第四章 結果與討論 55 4-1磁阻分析 56 4-2 高頻複數電容頻譜 58 4-2-1 高頻複數電容頻譜分析 58 4-2-2 高頻複數電容頻譜模擬與討論 60 4-3 高頻阻抗頻譜 65 4-3-1高頻阻抗頻譜分析 68 4-3-2 高頻阻抗頻譜模擬與討論 70 4-4 DC偏壓和高頻阻抗頻譜關係 75 4-4-1 DC偏壓和高頻阻抗頻譜分析 75 4-4-2 DC偏壓和高頻阻抗頻譜模擬與討論 76 4-5 X-ray反射率分析 79 4-6 高解析穿透式電子顯微鏡分析 80 第五章 結論 84

    第一章
    [1] S. Maekawa and U. G¨afvert, IEEE Trans. Magn. 18, 707 (1982).
    [2] T, Miyazaki and N. J. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).
    [3] J. S. Moodera, L. R. Kinder, T. M. Wong and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
    [4] M. Tsunoda, K. Nishikawa, S. Ogata, and M. Takahashi, Appl. Phys. Lett. 80, 3135 (2002)
    [5] D. Wang, C. Nordman, J. M. Daughton, Z. Qian, and J. Fink, IEEE Trans. Magn. 40, 2269 (2004).
    [6] J. Mathon and A. Umerski, Phys. Rev. B 63, 220403, (2001).
    [7] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant and S. H. Yang, Nat. Mater. 3, 862 (2004).
    [8] K. Tsunekawa, D. D. Djayaprawira, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 87, 072503 (2005).
    [9] J. Hayakawa, S. Ikeda, Y. M. Lee, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 89, 232510 (2006).
    [10] A. C. C. Yu, R. Doole, A. Petford-Long and T. Miyazaki, Jpn. J. Appl. Phys. 40 5058 (2001).
    [11] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Nat. Mater., 3, 868 (2004).
    [12] S. Yuasa, A. Fukushima, H. Kubota, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 89, 042505 (2006).
    [13] T. Dimopoulos, G. Gieres, J. Wecker, N. Wiese, Y. Luo and K. Samwer, J. Appl. Phys. 98, 073705 (2005).
    [14]D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 86, 092502 (2005).
    [15] K. Tsunekawa, D. D. Djayaprawira, S. Yuasa, M. Nagai1, H. Maehara, S. Yamagata, E. Okada, N. Watanabe, Y. Suzuki and K. Ando,IEEE Trans. Magn.42,2(2006)
    [16] G. X. Miao, K. B. Chetry, A. Gupta, W. H. Butler, K. Tsunekawa, D. Djayaprawira and G. Xiao, J. Appl. Phys. 99, 08T305(2006)
    [17] J. C. Read, P. G. Mather and R. A. Buhrman, Appl. Phys. Lett. 90, 132503(2007)
    [18] J. C. A. Huang and C. Y. Hsu, Appl. Phys. Lett. 85, 24(2004)
    [19] J. C. A. Huang and C. Y. Hsu, J. Appl. Phys. 98,064901(2005)

    第二章
    [1] M.N. Bibich, J.M.,A.Fert, F.Nugyen van Dau, F.Petroff, P.Eienne, G.Creuzt, A. Friendeich, and J.Chzels, Pys, Rev. Lett. Vol.61, 2472(1988)
    [2] R. Von. Helmot, J. Wecker, B. Holzapfel, L. Schultz and K. Samwer,Phys. Rev. Lett. 71, 2331 (1993).
    [3] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh and L. H. Chen, Science, 264, 413 (1994)
    [4] S. Jin, T. H. Tiefel, M. McCormack, H. O. M. Bryan, L. H. Chen and R. Ramesh, App. Phys. Lett. 67, 577 (1995).
    [5] M. Jullière, Phys. Lett. A 54 (1975) 225; M. Jullière, Thesis of Rennes University, No. B368/217, Rennes, (1975)
    [6]Chelkowski, A.,”Dielectric Physics”, Polish Scientific Publishers, New York, (1980)

    第三章
    [1] 顏君乘、黃榮俊, 高真空退火處理對氧化釩薄膜磁性與結構的研究,成大物理碩士論文(2004)。
    [2] http://www.ncku.edu.tw/%7Efacility/facility/index.htm,成功大學貴重儀器中心(2007)。
    [3] http://140.116.176.21/www/technique/SOP_nano/SOP-(TEM-2010).doc,成功大學微奈米中心(2007)。

    下載圖示 校內:2008-07-11公開
    校外:2010-07-11公開
    QR CODE