簡易檢索 / 詳目顯示

研究生: 周富晨
Chou, Fu-Chen
論文名稱: 適應性點雲過濾演算法於空載光達資料產生數值高程模型之研究
An Adaptive Point Cloud Filtering Algorithm for DEM Generation from Airborne Lidar Data
指導教授: 曾義星
Tseng, Yi-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 89
中文關鍵詞: 數值高程模型空載光達雷射掃瞄過濾
外文關鍵詞: Laser Scanning, LIDAR, Filtering, DEM
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   空載光達目前最主要的應用為DEM的生產,而空載光達所得之點雲資料為DSM,應用於生產DEM則須先將非地面點濾除。本研究的目的即為利用空載光達資料生產DEM,主要探討如何過濾點雲。
      本研究提出「適應性點雲過濾演算法」,主要以坡度適應性的概念過濾點雲。本法以三維網格為基礎,建立點位的搜尋機制,並利用其篩選點雲,以擬合平面法(Fitting Plane)計算地表大範圍之趨勢面及局部坡度。過濾程序分兩階段進行:(1)粗略過濾及(2)細節過濾。粗略過濾利用地表大範圍之趨勢面,以門檻值的操作將遠離地表的點濾除,主要包括:大型地物以及樹木頂面的點。而細節過濾則由粗略過濾所保留的點,考量小範圍的點雲分佈,根據局部坡度進行過濾。經由上述兩階段的過濾程序,本法最後設計了迭代過濾,主要目的在於逐次修正趨勢面,避免趨勢面與地表過度的偏離。
      本研究利用新竹地區空載光達資料作為實驗資料,選取不同類型的地形、地物探討本演算法的可行性。經由實際測試,本演算法在大多數情況下有效、可行,並能達到良好的過濾結果,唯在地形斷線處以及地形突然隆起或是下陷處,可能會將地面點過度濾除。而針對少部分過濾有誤的地方仍須以人工進行檢核編修,以確保DEM之成果品質。

      DEM generation is the primary application of airborne Lidar. The point cloud provided by airborne Lidar not only represents the terrain surface, but also contains buildings, vegetation, or other ground objects. The major process of generating DEM from airborne Lidar is to filter out non-ground points from the point cloud data. The purpose of this study is to propose an adaptive filtering algorithm for DEM generation using airborne Lidar data.
      The filtering algorithm is based on the principle of morphological filtering theory. To make the algorithm adaptive, a 3-D grid structure is used to organize point cloud data, so that the trend surface and local slope of the ground can be estimated. The algorithm is carried out in two steps: the rough filtering and the detailed filtering. The rough filtering is to remove the points far away from the trend surface by the pre-defined threshold. Then the remained points will be filtered again using estimated local slope in the detailed filtering. The two-step filtering can be performed iteratively, so that the trend surface is modified gradually in each step of iteration to obtain the optimal result.
      The feasibility of the proposed algorithm is tested by using some test data with different characteristics of topography covering Hsinchu County. The algorithm is proud to be effective and practicable in most test cases, but in some cases some ground points in the rough terrain may be over-filtered. To assure the quality of DEM product, manual check and editing is still necessary against the improper filtering results.

    中文摘要......................................Ⅰ 英文摘要......................................Ⅱ 致謝..........................................Ⅲ 目錄..........................................Ⅳ 表目錄........................................Ⅵ 圖目錄........................................Ⅶ 第一章 前言...................................1 §1-1 數值高程模型之定義.......................1 §1-2 空載光達技術.............................3 §1-3 研究動機與目的...........................6 §1-4 研究構想與方法...........................7 §1-5 論文架構.................................9 第二章 空載光達生產DEM之流程.................10 §2-1 航帶平差................................10 §2-2 點雲過濾................................13 §2-3 形態濾波器之應用分析....................16 §2-4 成果檢核與編修..........................24 第三章 適應性點雲過濾演算法..................27 §3-1 適應性概念..............................27 §3-2 三維網格結構............................28 §3-2-1 三維網格之搜尋機制....................28 §3-2-2 三維網格切割間距之探討................30 §3-3 點雲資料擬合平面........................32 §3-4 演算法及流程............................36 第四章 實驗結果與分析........................43 §4-1 實驗資料與檢核資料......................43 §4-2 空載光達生產DEM之成果...................46 §4-3 過濾結果分析............................53 §4-3-1 不同過濾參數之差異....................54 §4-3-2 視覺評估..............................63 §4-4 空載光達生產DEM之成果評估...............75 第五章 結論與建議............................83 參考文獻.....................................85

    王蜀嘉及曾義星,內政部委託研究計畫報告書,2003。

    張祖勛及張劍清,數字攝影測量學,武漢測繪科技大學出版社,p.34~p.36,1996。

    張芝生、張元旭及曾正雄,「測繪學辭典」,國立編譯館,p.691~p.692,2003。

    賴志恆,「雷射掃瞄點雲資料八分樹結構化之研究」,國立成功大學測量工程研究所碩士論文,2003。

    Ackermann, F., 1992. Laserabtastung zur Küsten und Wattvermessung, ZfV 17, pp. 24-35.

    Ackermann, F., 1999. Airborne Laser Scanning - Present Status and Future Expectations, ISPRS Journal of Photogrammetry & Remote Sensing, 54: pp. 64-67.

    Axelsson, P., 1999. Processing of Laser Scanner Data - Algorithms and Applications, ISPRS Journal of Photogrammetry & Remote Sensing, 54: pp. 138-147.

    Axelsson, P., 2000. DEM Generation from Laser Scanner Data Using Adaptive Models, International Archives of Photogrammetry and Remote Sensing, Amsterdam, pp. 110-117.

    Baltsavias, E.P., 1999a. Airborne Laser Scanning: Basic Relations and Formulas, ISPRS Journal of Photogrammetry & Remote Sensing, 54: pp. 199-214.

    Baltsavias, E.P., 1999b. A Comparison Between Photogrammetry and Laser Scanning, ISPRS Journal of Photogrammetry & Remote Sensing, 54: pp. 83-94.

    Burman, H., 2000. Adjustment of Laser Scanner Data for Correction of Orientation Errors, International Archives of Photogrammetry and Remote Sensing, Amsterdam, pp. 125-132.

    Cobby, D.M., Mason, D.C. and Davenport, I.J., 2001. Image Processing of Airborne Scanning Laser Altimetry Data for Improved River Flood Modeling, ISPRS Journal of Photogrammetry & Remote Sensing, 56: pp. 121-138.

    Crombaghs, M.J.E., Bruegelmann, R. and de Min, E.J., 2000. On the Adjustment of Overlapping Strips of Laseraltimeter Height Data, International Archives of Photogrammetry and Remote Sensing, Amsterdam, pp. 230-237.

    Elberink, S.O. and Mass, H., 2000. The Use of Anisotropic Height Texture Measures for The Segmentation of Airborne Laser Scanner Data, IAPRS, Vol. XXXIII, Amsterdam.

    Gonzalez, R.C. and Woods, R.C., 1993. Digital Image Processing, Addison-Wesley Publishing Company.

    Haala, N. and Brenner, C., 1999. Extraction of Building and Trees in Urban Environments, ISPRS Journal of Photogrammetry & Remote Sensing, 54: pp. 130-137.

    Krzystek, P. (June 25, 1998). “Experimental Investigations into the Automatic DTM Generation”. OEEPE-Workshop. [online] Available: http://www. ifp.uni-stuttgart.de/oeepe/inpho.pdf (Mar. 5, 2004)

    Kraus, K. and Pfeifer, N., 1998. Determination of Terrain Models in Wooded Areas with Airborne Laser Scanner Data, ISPRS Journal of Photogrammetry & Remote Sensing, 53: pp. 193-203.

    Lohmann, P. and Koch, A., 1999. Quality Assessment of Laser- scanner-data. Proc. ISPRS Joint Workshop “Sensors and Mapping from Space”, University of Hanover, Institute for Photogrammetry and Engineering Surveys.

    Lohmann, P., Koch, A. and Schaeffer, M., 2000. Approaches to the Filtering of Laser Data, International Archives of Photogrammetry and Remote Sensing, Amsterdam, pp. 540-547.

    Maas, H.G., 2000. Least-Squares Matching with Airborne Laserscanning Data in a TIN Structure, International Archives of Photogrammetry and Remote Sensing, Amsterdam, pp. 548-555.

    Mass, H.G. and Vosselman, G., 1999. Two Algorithms for Extracting Building Models from Laser Altimetry Data, ISPRS Journal of Photogrammetry & Remote Sensing, 54: pp. 153-163.

    Pereira, L.M.G. and Wicherson R.J., 1999. Sutibility of Laser Data for Deriving Geographical Information A Case Study in The Context of Management of fluvial zones. ISPRS Journal of Photogrammetry & Remote Sensing, 54: pp. 105-114.

    Petzold, B., Reiss, P. and Stössel, W., 1999. Laser Scanning – surveying and mapping agencies are using a new technique for the derivation of digital terrain models, ISPRS Journal of Photogrammetry & Remote Sensing, 54: pp. 95-104.

    Schenk, T., 2001. Modeling and Recovering Systematic Errors in Airborne Laser Scanners, OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models, Stockholm, pp. 40-48.

    Steinel, E., Kiema, J., Leebmann, J. and Bähr, L.H., 2001. Laserscanning for Analysis of Damages Caused by Earthquake Hazards, OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models, Stockholm, pp. 88-99.

    Törmä, M., 2000. Estimation of Tree Species Propotions of Forest Stands Using Laser Scanning, International Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B7.Amsterdam.

    Vosselman, G., 2000. Slope Based Filtering of Laser Altimetry Data, International Archives of Photogrammetry and Remote Sensing, Amsterdam, pp. 935-942.

    Vosselman, G. and Maas, H.G., 2001. Adjustment and Filtering of Raw Laser Altimetry Data, OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models, Stockholm, pp. 62-73.

    Wehr, A. and Lohr, U., 1999. Airborne Laser Scanning – An Introduction and Overview, ISPRS Journal of Photogrammetry & Remote Sensing, 54: pp. 68-82.

    Yoon, J. and Shan, J., 2000. Urban DEM Generation from Raw Airborne Lidar Data, International Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B3, Amsterdam.

    下載圖示 校內:立即公開
    校外:2004-07-12公開
    QR CODE