簡易檢索 / 詳目顯示

研究生: 張文馨
Chang, Wen-Hsin
論文名稱: 添加鋯酸鋇之鈦酸鋇介電材料之製備分析與電性
Preparation, Characterization, and Dielectric Properties of Barium Zirconate-Added Barium Titanate
指導教授: 黃啓原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 124
中文關鍵詞: 鈦酸鋇鋯酸鋇結晶相介電性質絕緣電阻率
外文關鍵詞: Barium titanate, barium zirconate, crystal phase, insulation resistivity, dielectric properties
相關次數: 點閱:76下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了改善鈦酸鋇材料之絕緣電阻率與電容溫度穩定性,在過去研究中嘗試將鋯離子以固態反應法合成方式製備 Ba0.997(Ti1-xZrx)O3 (BTZ) 陶瓷固溶體,並分別加入三種含有稀土元素之dopant形成殼核結構,發現在鋯含量為 30 - 50 mol.% 之電阻率與電容穩定性表現較佳,不過其溫度與電容變化率曲線 (TCC curves) 仍無法符合X7T (電容變化率 +22 % 至 –33 %,溫度範圍-55℃至125℃) 工業規範,判斷殼核結構中核區域的組成為主導TCC曲線之重要因素。本研究將改變過去樣品製程方式,利用兩種商業用主體粉末鈦酸鋇 (BT) 和鋯酸鋇 (BZ),取BZ計量比30 - 50 mol.% 加入BT中,並分別添加兩種含有稀土元素Gd的dopant進行混合,接著以直接燒結的方式形成 (1-x) BT+ x BZ (x = 0, 30, 40, 50 mol%) 陶瓷體,探討不同成分點之結晶相、顯微結構、電阻率和介電性質之變化,比較此BT+BZ製程方式與先前傳統固態反應合成之BTZ陶瓷體電性間的差異。
    在結晶相分析結果中,混合BZ01 dopant之晶體為單一立方晶系,隨著BZ含量增加,晶格體積呈上升趨勢,而混合BZ02 dopant之XRD結果存在BaZrO3 二次相,透過SEM觀察也發現BZ02 dopant之樣品出現小顆粒凝聚之二次相結構,導致電阻率皆小於0.5 GΩ* m,且介電損耗較量高;而混合BZ01 dopant之晶粒分布較均勻,在BZ 為30 mol.% 時出現低介電損耗與電阻率最高值16.1 G  m,利用改變頻率量測其介電性質,觀察到BZ為30 mol.% 時介電常數損耗量最低,判斷其化學缺陷濃度相對較低。在電容穩定性量測結果中,發現BT+BZ陶瓷體在溫度改變下電容變化率小,符合X7T工業規範,且隨著BZ含量增加,TCC曲線向逆時針方向旋轉;在直流偏壓測試中,BT+BZ陶瓷體之電容變化率受電壓的影響小,VCC曲線平坦,與純鈦酸鋇相比在0.5 kV 之電壓環境下穩定度高,透過TEM觀察,發現BT+BZ陶瓷體不具鐵電相domain,因此材料較不受電場改變而影響。無論是TCC或是VCC曲線,與BTZ陶瓷體相比,BT+BZ陶瓷體皆具有更小的電容變化率,表示以鋯酸鋇加入鈦酸鋇系統之製程方式改變材料內部結構性質,可有效改善電容溫度和電壓穩定性,並透過鋯酸鋇和Gd 之成分比例搭配,達到高絕緣電阻率。

    In order to improve the insulation resistivity and capacitance stability of barium titanate materials, two commercial powders, barium titanate (BT) and barium zirconate (BZ), were be mixed together and added two different dopants slurry (BZ01/BZ02), the Gd2O3 content in BZ02 dopant is twice that in BZ01 dopant, and then sintering directly to form (1-x) BT + x BZ (x = 0, 30, 40, 50 mol%) ceramics. This study hopes to observe the effect of the following two things on crystal phase and dielectric properties, one is the change of BT and BZ ratio, the other is the content of Gd2O3, and to compare the electrical properties of barium zirconate titanate ceramic between conventional solid-state method (BTZ) and BT+BZ co-sintering process. In the results of BT+BZ ceramics, all the samples with BZ01 dopant are cubic single phase and the highest resistivity occurs at BZ = 30 mol.%, while the sample with BZ02 dopant show the existence of BaZrO3 secondary phase, resulting in lower resistivity. In the capacitance stability measurement, it is found that the capacitance change rate of BT+BZ ceramics is small enough to fit the X7T industrial specification under temperature change, and the TCC curves rotate in a counterclockwise direction with the increase of BZ content. In the DC bias test, the capacitance change rate is little affected by the applied voltage, which has a high degree of stability compared with that of pure barium titanate in the voltage environment of 0.5 kV.

    摘要 I 目錄 XIV 表目錄 XVII 圖目錄 XIX 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 文獻回顧與理論基礎 3 2-1 鈦酸鋇之晶體結構與性質 3 2-2 鈦酸鋇之介電性質 6 2-3 固態反應法合成之鈦酸鋇系統粉末 8 2-4 鈦酸鋇粉末尺寸與晶粒效應 8 2-4-1 鈦酸鋇粉末顆粒大小之影響 9 2-4-2 鈦酸鋇陶瓷體晶粒大小之影響 11 2-5 鈦酸鋇之鋇鈦比固溶範圍 13 2-6 鈦酸鋇系統之置換作用 16 2-6-1 置換原理 16 2-6-2 容忍因子 18 2-7 添加物對鈦酸鋇之影響 20 2-7-1 添加同價離子對鈦酸鋇之影響 21 2-7-2 添加異價離子對鈦酸鋇之影響 22 2-7-3 添加鋯離子對鈦酸鋇之影響 23 2-8 鈦酸鋇與鋯酸鋇介電材料之可靠度改善 29 第三章 實驗方法與步驟 32 3-1 起始原料 34 3-2 粉末及陶瓷體製備 34 3-2-1 鋯摻雜之鈦酸鋇粉末製備 34 3-2-2 鋯摻雜之鈦酸鋇陶瓷體製備 35 3-2-3 鋯酸鋇加入鈦酸鋇陶瓷體製備 35 3-3 材料分析 36 3-3-1 X光繞射分析 36 3-3-2 晶體結構擬合精算分析 37 3-3-3 比表面積分析 38 3-3-4 陶瓷燒結體密度量測 38 3-3-5 掃描式電子顯微鏡分析 39 3-3-6 穿透式電子顯微鏡分析 39 3-4 陶瓷體電性量測 40 3-4-1 陶瓷燒結體電性樣品製備 40 3-4-2 介電常數與電容變化率 40 3-4-3 介電性質隨頻率變化之量測 41 3-4-4 絕緣電阻率之量測 41 3-4-5 電壓電容變化率之量測 42 第四章 鋯摻雜之鈦酸鋇結果與討論 43 4-1 起始粉末分析 43 4-1-1 起始粉末預燒處理 43 4-1-2 起始粉末相鑑定分析 43 4-1-3 起始粉末顯微結構分析 45 4-2 煅燒粉末分析 46 4-2-1 煅燒粉末結晶相分析 46 4-2-2 煅燒粉末晶體結構擬合精算分析 48 4-2-3 煅燒粉末顯為結構與比表面積分析 54 4-3 陶瓷體密度分析與電性量測 57 4-3-1 陶瓷體密度分析 57 4-3-2 介電性質 58 第五章 鋯酸鋇加入鈦酸鋇系統之結果與討論 61 5-1 原料分析 61 5-1-1 原料相鑑定 61 5-1-2 原料顯微結構與比表面積分析 62 5-2 陶瓷體分析 63 5-2-1 陶瓷體密度分析 63 5-2-2 陶瓷體結晶相分析 65 5-2-3 陶瓷體晶體結構擬合精算分析 68 5-2-4 陶瓷體顯微結構分析 74 5-3 電性量測 78 5-3-1 室溫下介電性質與絕緣電阻率量測 78 5-3-2 溫度與電容變化率量測 83 5-3-3 電壓與電容變化率量測 86 5-3-4 頻率與介電性質量測 89 5-4 穿透式電子顯微鏡分析與電性關係之探討 91 第六章 結論 94 參考文獻 95

    1. K. Hong, T. H. Lee, J. M. Suh, S. H. Yoon, and H. W. Jang, “Perspectives and Challenges in Multilayer Ceramic Capacitors for Next Generation Electronics,” Journal of Materials Chemistry, vol. 7, no. 32, pp. 9782-9802, (2019).
    2. W.-D. Kingery, H.-K. Bowen, and D.-R. Uhlmann, Introduction to Ceramics, America: John Wiley & sons, (1976)
    3. D. Rase and R. Roy, “Phase Equilibria in the System BaO-TiO2,” Journal of the American Ceramic Society, vol. 38, no. 3, pp. 102-113, (1955).
    4. L.-C. Dufour and C. Monty, Surfaces and Interfaces of Ceramic Materials: Springer Science & Business Media, (2012).
    5. 吳朗,電工材料: 全華圖書,(2012)。
    6. S. Swain, “Synthesis and Characterizations of SrBi2Ta2O9 Modified NBT-BT and NBT-KNN Ferroelectric Ceramics near Morphotropic Phase Boundary,” 2016.
    7. K. Kiss, J. Magder, M.-S. Vukasovich, and R.-J. Lockhart, “Ferroelectrics of Ultrafine Particle Size: I, Synthesis of Titanate Powders of Ultrafine Particle Size,” Journal of the American Ceramic Society, vol. 49, no. 6, pp. 291-295 (1966).
    8. 張哲源,以尿素-硝酸鋇沉澱之碳酸鋇披覆於二氧化鈦以合成鈦酸鋇之研究。國立成功大學資源工程研究所碩士論文,(2007)。
    9. D. Yoon, “Tetragonality of barium titanate powder for a ceramic capacitor application,” Journal of Ceramic Processing Research, vol. 7, no. 4, pp. 343, (2006).
    10. K. Uchino, E. Sadanaga, and T. Hirose, “Dependence of the crystal structure on particle size in barium titanate,” Journal of the American Ceramic Society, vol. 72, no. 8, pp. 1555-1558, (1989).
    11. G. Arlt, D. Hennings, and G. De With, “Dielectric properties of fine‐grained barium titanate ceramics,” Journal of applied physics, vol. 58, no. 4, pp. 1619-1625, (1985).
    12. Yong-An, H., L. Biao, Z. Yi-Xuan, L. Dan-Dan, Y. Ying-Bang, T. Tao, L. Bo, and L. Sheng-Guo, Grain size effect on dielectric, piezoelectric and ferroelectric property of BaTiO3 ceramics with fine grains. Journal of Inorganic Materials, vol. 33, no. 7, pp.767-772, (2018).
    13. S. Lee, C.-A. Randall, and Z.-K. Liu, “Modified Phase Diagram for the Barium Oxide-Titanium Dioxide System for the Ferroelectric Barium Titanate,” Journal of the American Ceramic Society, vol. 90, no. 8, pp. 2589-2594, (2007).
    14. S. Lee, Z.-K. Liu, M.-H. Kim, and C.-A. Randall, “Influence of Nonstoichiometry on Ferroelectric Phase Transition in BaTiO3.” Journal of Applied Physics, vol. 101, no. 5, (2007).
    15. 杜明婷,鋇鈦比對鈦酸鋇粉末晶粒大小及結晶相之影響。國立成功大學資源工程研究所碩士論文,(2008)。
    16. C.-G. Bergeron and S.-H. Risbud, Introduction to Phase Equilibria in Ceramics, America: Wiley, (1984).
    17. L.-A. Xue, Y. Chen, and R.J. Brook, “The Influence of Ionic Radii on the Incorporation of Trivalent Dopants into BaTiO3,” Materials Science and Engineering: B, vol. 1, no. 2, pp. 193-201, (1988).
    18. M. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, and M. Hanuskova, “Influence of Foreign Ions on the Crystal Structure of BaTiO3,” Journal of the European ceramic society, vol. 20, no. 12, pp.1997-2007, (2000).
    19. H. Kishi, N. Kohzu, Y. Mizuno, Y. Iguchi, J. Sugino, H. Ohsato, and T. Okuda, “Effect of occupational sites of rare-earth elements on the microstructure in BaTiO3,” Japanese journal of applied physics, vol. 38, no. 9S, pp. 5452, (1999).
    20. O. Muller and R. Roy, The Major Ternary Structural Families, Berlin-Heidelberg-New York: Springer-Verlag, (1974).
    21. 吳朗,電子陶瓷:全欣圖書,(1992)。
    22. J. Lin and T. Wu, “Effects of Isovalent Substitutions on Lattice Softening and Transition Character of BaTiO3 solid Solutions,” Journal of Applied Physics, vol. 68, no. 3, pp. 985-993, (1990).
    23. D. Makovec, Z. Samardžija, U. Delalut, and D. Kolar, “Defect Structure and Phase Relations of Highly Lanthanum‐Doped Barium Titanate,” Journal of the American Ceramic Society, vol. 78, no. 8, pp. 2193-2197, (1995).
    24. S. Sato, Y. Nakano, A. Sato, and T. Nomura, “Effect of Y-Doping on Resistance Degradation of Multi-Layer Ceramic Capacitors with Ni Electrodes under the Highly Accelerated Life Test,” Japanese Journal of Applied Physics, vol. 36, no. 9S, pp. 6016, (1997).
    25. T. Okamatsu, H. Nishimura, N. Inoue, H. Sano, and H. Takagi, “The effect of rare earth (Ln= Gd, Dy, Y and Yb) doping on the microstructure and reliability in BaTiO3-based monolithic ceramic capacitors (MLCs),” Key engineering materials, vol. 421, pp. 301-304, (2010).
    26. Y. Sakabe, Y. Hamaji, H. Sano, and N. Wada, “Effects of Rare-Earth Oxides on the Reliability of X7R Dielectrics,” Japanese Journal of Applied Physics, vol. 41, no. 9R, p. 5668, (2002).
    27. T. N. Verbitskaia, G. S. Zhdanov, I. N. Venevtsev, and S. P. Soloviev, “Soviet Physics Crystallography 3,” pp. 182-186, (1958).
    28. P. Dobal, A. Dixit, R. Katiyar, Z. Yu, R. Guo, and A. Bhalla, “Micro-Raman scattering and Dielectric Investigations of Phase Transition Behavior in the BaTiO3-BaZrO3 System,” Journal of Applied Physics, vol. 89, no. 12, pp.8085-8091, (2001).
    29. S. J. Kuang, X. G. Tang, L. Y. Li, Y. P. Jiang, and Q. X. Liu, “Influence of Zr dopant on the dielectric properties and Curie temperatures of Ba(ZrxTi1− x)O3 (0≤ x≤ 0.12) ceramics,” Scripta Materialia, vol. 61, no. 1, pp. 68-71, (2009).
    30. R. D. Levi, Solid solution trends that impact electrical design of submicron layers in dielectric capacitors. Ph.D. Thesis, The Pennsylvnia State University, University Park, PA, (2009).
    31. S. Lee, W.H. Woodford, and C.A. Randall, “Crystal and Defect Chemistry Influences on Band Gap Trends in Alkaline Earth Perovskites.” Applied Physics Letters, vol. 92, no. 20, p.201909, (2008).
    32. 黃莉雯,鋯摻雜鈦酸鋇介電材料 (Ba0.997(Ti1-xZrx)O3, x = 0 - 0.5) 之製備、分析、與電性。國立成功大學資源工程研究所碩士論文,(2023)。
    33. S.-F. Wang, Y.-F. Hsu, C.-W. Chang, B.-C. Lai, J.-H. Li, and Y.-C. Lai, “DC bias characteristics of BaTi0.65Zr0.35O3 with additives (Gd2O3, SiO2, MgO) for multilayer ceramic capacitors,” Ceramics International, vol. 46, no. 18, pp. 28227-28236, (2020).
    34. 高育儒,0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 壓電材料的晶粒大小對晶體結構與介電性質之影響
    35. A. Honda, S. i. Higai, T. Okamoto, N. Inoue, Y. Motoyoshi, N. Wada, and H. Takagi, “Alkaline-earth and rare-earth elements and oxygen vacancy in BaTiO3: analyses by first-principles calculations and EXAFS,” Key Engineering Materials, vol. 485, pp. 23-26, (2011).
    36. Y. Tsur, T. D. Dunbar, and C. A. Randall, “Crystal and Defect Chemistry of Rare Earth Cations in BaTiO3,” Journal of Electroceramics, vol. 7, no. 1, pp. 25-34, (2001).
    37. S. Sato, Y. Fujikawa, and T. Nomura, “Effect of Rare-Earth Doping on the Temperature-Capacitance Characteristics of MLCCs with Ni Electrodes,” The Ceramic Society of Japan, pp. 481-485, (2004).
    38. L. Lingxia, G. Rui, Z. Ping, Z. Jing, and W. Hongru, “Effect of Doping Gd2O3 on Dielectric Properties of Metal-Dielectric Composite Materials,” Journal of Rare Earths, vol. 25, pp. 151-153, (2007).
    39. D. Zhan, Q. Xu, D.-P. Huang, H.-X. Liu, W. Chen, and F. Zhang, “Contributions of intrinsic and extrinsic polarization species to energy storage properties of Ba0. 95Ca0. 05Zr0.2Ti0.8O3 ceramics,” Journal of Physics and Chemistry of Solids, vol. 114, pp. 220-227, (2018).
    40. S.-F. Wang, Y.-F. Hsu, C.-W. Chang, Y.-L. Liao, J.-H. Li, and Y.-C. Lai, “Dielectric Properties and DC Bias Characteristics of BaTi1-mZrmO3-x mol.% MgO-4.5 mol.% Gd2O3-2 mol.% SiO2 Ceramics,” Journal of Electronic Materials, vol. 50, no. 10, pp. 5946-5954, (2021).
    41. Q. Luo, X. Li, Z. Yao, L. Zhang, J. Xie, H. Hao, M. Cao, A. Manan, and H. Liu, “The role of dielectric permittivity in the energy storage performances of ultrahigh-permittivity (SrxBa1−x)(Ti0.85Sn0.15)O3 ceramics,” Ceramics International, vol. 44, no. 5, pp. 5304-5310, (2018).
    42. T. Tsurumi, M. Shono, H. Kakemoto, S. Wada, K. Saito, and H. Chazono,“Mechanism of capacitance aging under DC-bias field in X7R-MLCCs,” Journal of electroceramics, vol. 21, no. 1, pp. 17-21, (2008).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE