| 研究生: |
張簡靖恒 Chang Chien, Ching-Heng |
|---|---|
| 論文名稱: |
新冠疫情對失業率的影響:澳洲與加拿大的實證分析 The impact of the COVID-19 pandemic on unemployment rates: An empirical analysis of Australia and Canada. |
| 指導教授: |
王富美
Wang, Fuh-mei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 經濟學系 Department of Economics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 新型冠狀病毒 、反事實分析法 、偏差校正的最小平方虛擬變數法 |
| 外文關鍵詞: | Counterfactual analysis, Bias-corrected least squares dummy variable model (LSDVC) |
| 相關次數: | 點閱:74 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新型冠狀病毒(Coronavirus Disease 2019,COVID-19)於2020年重創全球,對全世界的經濟、健康與生活造成前所未有的影響,澳洲和加拿大的勞動市場亦受到新冠疫情的嚴重衝擊。
本研究透過反事實分析法(Counterfactual analysis),探討新冠疫情對澳洲與加拿大失業率的影響,使用兩國官方公布的2010年到2022年失業率月資料,採疫情爆發(2020年2月)前的資料建立ARIMA時間序列模型(Autoregressive Integrated Moving Average model),並對疫情爆發後的期間進行失業率預測,藉此建立假設不存在新冠疫情的反事實情況,並與新冠疫情導致的真實失業率狀況進行差異比較。再而,採用偏差校正的最小平方虛擬變數法(Bias-corrected least squares dummy variable,LSDVC),衡量疫情發生率、疫情死亡率、政府管制嚴格程度對兩國各行政區失業率的影響。
研究發現:新冠疫情使兩國的失業率攀升,疫情初期澳洲和加拿大失業率分別上升1.38%和4.68%,隨著新冠疫苗的施打,疫情的負面影響減緩。年輕族群受疫情的影響相對嚴重,可能原因為:年輕族群大多受雇於餐飲、旅遊、零售、住宿服務等行業,此類行業較容易受疫情衝擊。再而,政府管制措施越嚴格將導致越高的失業率,疫情死亡率的增加導致加拿大失業率上升的負面影響;然而,疫情發生率、疫情死亡率並未對澳洲失業率產生顯著影響。
To investigate the impact of the coronavirus disease 2019 (COVID-19) on the unemployment rates, this study uses counterfactual analysis and the bias-corrected least squares dummy variable model (LSDVC) to estimate changes in the unemployment rates over the COVID-19 pandemic period from 2020 to 2022 in Australia and Canada. Estimation results indicate that the COVID-19 pandemic increased the unemployment rates, especially in the group aged from 15 to 24 years. In addition, strict domestic and border restrictions lead to increases in the unemployment rates.
中文部分
呂晉瑋:《新興傳染疾病的人力資本損失:以加拿大嚴重特殊傳染性肺炎為例》,國立成功大學經濟學系研究所碩士論文,2022年。
李敦義:《補習數學有用嗎?一個「反事實」的分析》,臺灣社會學刊,第41期(2008),頁97-148。
英文部分
Adams-Prassl, A., Boneva, T., Golin, M. and Rauh, C. (2020). Inequality in the impact of the coronavirus shock: Evidence from real time surveys. Journal of Public Economics, 189.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6): 716-723.
Alderman, J. and Harjoto, M. (2020). COVID-19: US shelter-in-place orders and demographic characteristics linked to cases, mortality, and recovery rates. Transforming Government: People, Process and Policy, 15(4): 627-644.
Basco, S., Domenech, J. and Roses, J. R. (2021). The redistributive effects of pandemics: Evidence on the Spanish flu. World Development, 141: 105389.
Bauer, A. and Weber, E. (2020). COVID-19: how much unemployment was caused by the shutdown in Germany? Applied Economics Letters, 28(12): 1053-1058.
Box, G. E. P. and Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control, Holden-Day Publishing.
Box, G. E. P. and Jenkins, G. M. (2016). Time Series Analysis: Forecasting and Control. Fifth Edition, John Wiley and Sons Publishing.
Bruno, G. S. F. (2005). Approximating the bias of the LSDV estimator for dynamic unbalanced panel data models. Economics Letters, 87(3): 361-366.
Bun, M. J. G. and Kiviet, J. F. (2003). On the diminishing returns of higher-order terms in asymptotic expansions of bias. Economics Letters, 79(2): 145-152.
Carillo, M. F. and Jappelli, T. (2022). Pandemics and regional economic growth: evidence from the Great Influenza in Italy. European Review of Economic History, 26(1): 78-106.
Dang, H. H. and Viet Nguyen, C. (2021). Gender inequality during the COVID-19 pandemic: Income, expenditure, savings, and job loss. World Development, 140: 105296.
Greene, W. (2012). Econometric Analysis. 7th Edition, Prentice Hall Publishing.
Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A., Phillips, T., Webster, S., Cameron-Blake, E., Hallas, L., Majumdar, S., and Tatlow, H. (2021). A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nature Human Behaviour, 5(4): 529-538.
Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81(396): 945-960.
Joffe, A. R. (2021). COVID-19: Rethinking the lockdown groupthink. Front Public Health, 9: 625778.
Johnson, N. and Mueller, J. (2002). Updating the accounts: global mortality of the 1918-1920 "Spanish" influenza pandemic. Bulletin of the History of Medicine, 76(1): 105-115.
Judson, R. A. and Owen, A. L. (1999). Estimating dynamic panel data models: a guide for macroeconomists. Economics Letters, 65(1): 9-15.
Karlsson, M., Nilsson, T. and Pichler, S. (2014). The impact of the 1918 Spanish flu epidemic on economic performance in Sweden: an investigation into the consequences of an extraordinary mortality shock. Journal of Health Economics, 36: 1-19.
Kiviet, J. F. (1995). On bias, inconsistency, and efficiency of various estimators in dynamic panel data models. Journal of Econometrics, 68(1): 53-78.
Lemieux, T., Milligan, K., Schirle, T. and Skuterud, M. (2020). Initial Impacts of the COVID-19 Pandemic on the Canadian Labour Market. Canadian Public Policy, 46(S1): S55-S65.
Li, T., Barwick, P. J., Deng, Y., Huang, X. and Li, S. (2023). The COVID-19 pandemic and unemployment: evidence from mobile phone data from China. Journal of Urban Economics, 135: 103543.
Morris, W., Correa, A. and Leiva, R. (2023). Impact of COVID-19 containment measures on unemployment: a multi-country analysis using a difference-in-differences framework. International Journal of Health Policy and Management, 12: 7036.
Najjar-Debbiny, R., Gronich, N., Weber, G., Khoury, J., Amar, M., Stein, N., Goldstein, L. H., and Saliba, W. (2023). Effectiveness of Paxlovid in Reducing Severe Coronavirus Disease 2019 and Mortality in High-Risk Patients. Clinical Infectious Diseases, 76(3): E342-E349.
Percoco, M. (2015). Health shocks and human capital accumulation: the case of spanish flu in italian regions. Regional Studies, 50(9): 1496-1508.
Privara, A. (2022). Economic growth and labour market in the European Union: lessons from COVID-19. Oeconomia Copernicana, 13(2): 355-377.
Pugh, T., Harris, J., Jarnagin, K., Thiese, M. S. and Hegmann, K. T. (2022). Impacts of the statewide COVID-19 lockdown interventions on excess mortality, unemployment, and employment growth. Journal of Occupational and Environmental Medicine, 64(9): 726-730.
Reichelt, M., Makovi, K. and Sargsyan, A. (2020). The impact of COVID-19 on gender inequality in the labor market and gender-role attitudes. European Societies, 23(sup1): S228-S245.
Said, S. E. and Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3): 599-607.
Saravolatz, L. D., Depcinski, S., and Sharma, M. (2023). Molnupiravir and Nirmatrelvir-Ritonavir: Oral Coronavirus Disease 2019 Antiviral Drugs. Clinical Infectious Diseases, 76(1): 165-171.
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2): 461-464.
Serra, L., Silva, J. I. and Vall-Llosera, L. (2022). The unemployment effects of closing non-essential activities during the COVID-19 lockdown: The Spanish municipalities. Economic Analysis and Policy, 76: 806-819.
Su, C. W., Dai, K., Ullah, S. and Andlib, Z. (2021). COVID-19 pandemic and unemployment dynamics in European economies. Economic Research-Ekonomska Istraživanja, 35(1): 1752-1764.
Svabova, L., and Gabrikova, B. (2021). The rise in youth employment? Impact evaluation of COVID-19 consequences. Journal of Eastern European and Central Asian Research, 8(4): 511-526.
Svabova, L., Tesarova, E. N., Durica, M. and Strakova, L. (2021). Evaluation of the impacts of the COVID-19 pandemic on the development of the unemployment rate in Slovakia: counterfactual before-after comparison. Equilibrium-Quarterly Journal of Economics and Economic Policy, 16(2): 261-284.
Yao, Y., Pan, J. H., Wang, W. D., Liu, Z. X., Kan, H. D., Qiu, Y., Meng, X. and Wang, W. B. (2020). Association of particulate matter pollution and case fatality rate of COVID-19 in 49 Chinese cities. Science of the Total Environment, 741: 140396.
校內:2027-02-14公開