簡易檢索 / 詳目顯示

研究生: 沈建成
Shen, Jian-Cheng
論文名稱: 氣泡振動阻尼機制之研究
Study on the Damping Mechanisms of Bubble Oscillations
指導教授: 黃清哲
Huang, Ching-Jer
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 61
中文關鍵詞: 氣泡振動阻尼輻射阻尼熱阻尼自由液面黏滯阻尼形狀振動
外文關鍵詞: bubble oscillations, radiation damping, thermal damping, free surface, viscous damping, shape oscillation
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以實驗方法求得水中氣泡振動之阻尼常數,並與理論值比較。實驗方法主要是藉由水滴撞擊水面於水中產生單一氣泡,並利用水中聽音器量測氣泡之聲壓訊號。分析聲壓訊號可求得氣泡振動之阻尼常數。實驗所得阻尼常數將與理論解比較,以驗證目前文獻上有關氣泡振動阻尼理論之準確性。理論上,氣泡振動過程中能量損失主要有三種機制,分別為輻射阻尼、熱阻尼及黏滯阻尼。此外,當氣泡靠近自由液面時,氣泡之聲場會類似一偶極聲源 (dipole)之聲場,影響其輻射阻尼。若氣泡剛生成時為非圓球形時,也會有形狀振動模式。當形狀振動頻率與氣泡徑向振動頻率相同發生共振時,會產生額外的黏滯阻尼。本文氣泡振動阻尼常數之實驗值與考慮上述阻尼機制所得之理論值相較之下,相當吻合。此外,當氣泡半徑較大時,考慮形狀振動與徑向振動共振之黏滯阻尼,會使得理論值與實驗值較接近,但對較小氣泡而言,上述結果剛好相反。

    This paper determined the damping constant of the bubble oscillation experimentally. The experimental damping constants were then compared with the theoretical values, for verifying the accuracy of the theories. The bubble was produced by impacting single water droplet on a water surface. An underwater monitoring system was set up for detecting the sound of the bubble. The damping constants were then determined from the measured bubble sound. Theoretically, the attenuation of a spherical bubble in radial vibration is due to the radiation damping, the thermal damping, and the viscous damping. When the bubble locates near the free surface, the radiated sound field from the bubble behaves like that of a dipole. Furthermore, if the generated bubble is not spherical, a shape oscillation mode exists. The resonance of the shape oscillation and the radial vibration induces additional viscous damping. The experimental data for damping constants were in good agreement with the theoretical values. It is also to note that for larger bubbles, the inclusion of the viscous damping due to the resonance of the shape oscillation and the radial vibration reduces the deviation between the theory and the experiment. However, for smaller bubbles, the results were on the contrary.

    中 文 摘 要 I 英 文 摘 要 II 謝 誌 III 目 錄 IV 表 目 錄 VI 圖 目 錄 VII 符 號 說 明 IX 第一章 緒論 1 1.1 前言 1 1.2 水中振動氣泡衰減的機制(前人研究) 1 1.3 研究目的 3 第二章 理論分析 4 2.1 氣泡的運動方程式 4 2.1.1 Rayleigh-Plesset 方程 4 2.1.2 二階線性微分運動方程 7 2.2 熱阻尼(thermal damping) 9 2.2.1 無因次的熱阻尼常數 9 2.2.2 熱過程常數 對阻尼常數的影響 13 2.2.3 氣泡表面張力常數對阻尼常數的影響 14 2.2.4 熱擴散係數 對熱阻尼常數的影響 15 2.3 黏滯阻尼(viscous damping) 16 2.4 輻射阻尼(radiation damping) 18 2.5 氣泡形變(distortion of shape)所造成的阻尼20 第三章 實驗佈置及方法 23 3.1 實驗儀器設備 23 3.2 實驗佈置及方法 23 3.2.1 降雨實驗之實驗條件 24 3.2.2 降雨噪音的量測 24 3.3 實驗分析方法 24 第四章 實驗結果與討論 26 4.1 實驗環境噪音分析 26 4.2 處理氣泡產生時的訊號資料 27 4.2.1 濾波 27 4.2.2 估算氣泡的頻率及計算阻尼值 28 4.3 理論與實驗阻尼值之比較 29 4.3.1 球形氣泡的阻尼理論值 29 4.3.2 球形氣泡理論和實驗阻尼值的比較分析 31 4.3.3 考慮氣泡形狀振動所造成能量損失 32 第五章 結論與建議 33 5.1 結論 33 5.2 建議 34 參 考 文 獻 35

    1.Chapman, R. B. and M. S. Plesset, “Thermal effects in the free oscillations of gas bubbles,” Trans. ASME D. Vol. 94, pp. 142-145 (1972).
    2.Crandall, I. B., “Theory of vibrating systems and sound,” D. Van Nostrand Company, New York, pp. 120-121 (1926).
    3.Crowther, P. A., ”Bubble noise creation mechanisms,” in Sea Surface Sound, edited by B. R. Kerman, Kluwer Academic Publishers, pp. 131-150 (1988).
    4.Devin, C. Jr., “Survey of thermal, radiation, and viscous damping of pulsating air bubbles in water,” J. Acoust. Soc. Am. Vol. 31, pp. 1654-1667(1955).
    5.Ffowcs-Williams, J. E. and Y. P. Guo, “On resonant nonlinear bubble oscillations,” J. Fluid Mech. Vol. 224, pp. 507-529 (1991).
    6.Friedlander, B. and B. Porat, “Detection of transient signals by the Gabor representation,” IEEE Trans. Acoust. Speech Signal Process. Vol. 37, pp. 169-180 (1989).
    7.Friedlander, B. and A. Zeira, “Oversampled Gabor representation for trainsent signals,” IEEE Trans. Signal Process. , 43, pp. 2088-2094 (1995).
    8.Herring, C., “Theory of the pulsations of the gas globe produced by an underwater explosion,” NDRC Div. 6, Report CA-sr20 (1941).
    9.Keller, J. B. and I. I. Kolodner, “Damping of underwater explosion bubble oscillations,” J. Acoust. Soc. Am. Vol. 27, pp. 1152-1161 (1956).
    10.Lamb, H. Hydrodynamics, 6th ed. Cambridge University Press (1932).
    11.Lauterborn, W. “Numerical investigation of nonlinear oscillations of gas bubbles in liquids,” J. Acoust. Soc. Am. Vol. 59, pp. 283-293 (1976).
    12.Leighton, T. G., The Acoustic Bubble, London : Academic Press (1994).
    13.Leighton, T. G., M. F Schneider, and P. R. White, “Study of dimensions of bubble fragmentation using optical and acoustic techniques,” Sea Surface Sound 94’, Proc. of the Ⅲ International Meeting on Natural Physical Process Related to Sea Surface Sound, World Scientific, pp. 414-428 (1995).
    14.Leighton, T. G., P. R. White, and M. F. Schneider, “The detection and dimension of bubble entrainment and comminution,” J. Acoust. Soc. Am. Vol.103(4), pp. 1825-1835 (1998).
    15.Longuet-Higgins, M. S., “Monopole emission of sound by asymmetric bubble oscillations,” Part 1. Normal modes, J. Fluid Mech. Vol. 201, pp. 525-541(1989a).
    16.Longuet-Higgins, M. S., “Monopole emission of sound by asymmetric bubble oscillations,” Part 2. An initial value problem, J. Fluid Mech. Vol. 201,pp. 543-565 (1989b).
    17.Longuet-Higgins, M. S., “Bubble noise spectra,” J. Acoust. Soc. Am. Vol. 87(2), pp. 652-661 (1990).
    18.Longuet-Higgins, M. S., “Resonance in nonlinear bubble oscillations,” J. Fluid Mech. Vol. 224, pp. 531-549 (1991).
    19.Longuet-Higgins, M. S., “Nonlinear damping of bubble oscillation by resonant interaction,” J. Acoust. Soc. Am. Vol. 91, pp. 1414-1422 (1992).
    20.Minnaert, M., “On musical air-bubbles and the sounds of running water,”Phil. Mag. Vol. 16, pp. 235-248 (1933).
    21.Panton, R. L., “Incompressible Flow,” John Wiley and Sons (1984).
    22.Poritsky, H. “The Collapse or Growth of a Spherical Bubble or Cavity in a Viscous Fluid,” In: Proceedings of the First U. S. National Congress on Appolied Mechanics, pp. 813-821 (1952).
    23.Pumphrey, H. C., “Sources of ambient noise in the ocean: an experimental investigation,” PhD dissertation, University of Mississippi (1989).
    24.Strasberg, M., “The pulsation frequency of nonspherical gas bubbles,” J. Acoust. Soc. Am. Vol. 25, pp. 536-537 (1953).
    25.Strasberg, M., “Gas bubbles as sources of sound in liquids,” J. Acoust. Soc. Am. Vol. 28, pp. 20-26 (1956).
    26.Tsamopoulos, J. A. and R. A. Brown, “Nonlinear oscillation of inviscid drops and bubbles,” J. Fluid Mech. Vol. 127, pp. 519-537 (1983).
    27.尹孝元,“水下爆炸氣泡之動力分析 ”,國立成功大學水利及海洋工程研究所碩士論文 (1996)。(指導教授 黃清哲)
    28.賴文傑,“聲波通過氣泡幕衰減特性研究 ”,國立成功大學水利及海洋工程研究所碩士論文 (1999)。(指導教授 黃清哲)
    29.許世盛,“近岸碎波產生氣泡之特性”,國立成功大學水利及海洋工程研究所碩士論文(2000)。(指導教授 黃清哲)
    30.葉智惠,“水滴撞擊水面產生氣泡之類型及噪音特性之研究”,國立成功大學水利及海洋工程研究所碩士論文 (2002)。(指導教授 黃清哲)

    下載圖示 校內:2003-07-31公開
    校外:2004-07-31公開
    QR CODE