簡易檢索 / 詳目顯示

研究生: 張家源
Chang, Jia-Yuan
論文名稱: 氮缺乏培養條件對藍綠菌Thermosynechococcus sp. CL-1之固碳、單醣產能與雌激素降解影響
Impacts of nitrogen starvation in Thermosynechococcus sp. CL-1 cultivation on CO2 fixation, 17β-estradiol degradation and monosaccharides production
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 125
中文關鍵詞: 藍綠菌二氧化碳氮缺乏碳水化合物單醣雌二醇雌激素
外文關鍵詞: cyanobacteria, Thermosynechococcus sp. CL-1, CO2, nitrogen starvation, monosaccharides, carbohydrate, 17β-estradiol, estrogen
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大氣中二氧化碳濃度上升的情況已備受矚目,再生資源將有助於減緩二氧化碳的排放,其中生質能源就是解決方案之一。光合生物能將空氣中的二氧化碳固定下來轉化成生質體,而這些生質體可作為生質燃料,其中藍綠菌及微藻比起陸生植物有10-50倍的生長速率及光合作用效率。
    此外,工業及畜牧業所產生的新興污染物,如內分泌干擾物質(雌激素)是無法被傳統的污水處理廠有效去除,故排放至環境中會影響生態以及人類的健康,特別是雌激素中的雌二醇更是造成動物雌性化的主要物質。而近年來藍綠菌及微藻的相關研究顯示,將它們運用在污水處理系統當中能有效的去除這類的新興無染物。
    因此,本研究旨在利用藍綠菌處理系統,固定煙道氣中之二氧化碳,產生生質燃料(單醣),並同時降解雌二醇。在本研究中選擇嗜熱藍綠菌Thermosynechococcus sp. CL-1 (TCL-1)作為實驗菌種,固定二氧化碳並運用氮缺乏的培養條件(0.58、2.9、5.8、8.7 mM)找出最佳單醣產率的條件,再藉由添加不同濃度的雌二醇(0.5、1.0、5.0 mg/L)探討雌二醇對TCL-1系統單醣產率的影響及TCL-1對雌二醇降解的能力。
    研究結果顯示,在氮源為0.58 mM的條件下,TCL-1能達到最高的單醣產率35.4 mg/L/h。在雌二醇的試驗中,結果顯示雌二醇會很快地被TCL-1轉化成雌一醇,雌一醇隨後在此系統被降解。在雌二醇濃度為1.0 mg/L的條件下,TCL-1可對其達到最高的去除率69.4%;在5.0 mg/L的條件下,則有最高的去除速率0.201 mg/L/h。而在添加不同雌二醇濃度的情況下,並不會對TCL-1的單醣產能造成影響。

    At present, people are paying great attention to reduce CO2 emissions and developing renewable and sustainable energy as a substitute for fossil fuels. Cyanobacteria and microalgae have become a promising solution to these two issues. They can use CO2 as a carbon source during photosynthesis processes, and the resulting biomass is rich in high energy potency ingredients that can be converted into various biofuels such as biodiesel and bioethanol.
    In addition, the rapid growth of population activities in industrial and livestock has led to pollution of aquatic systems in the environment. The endocrine disrupting chemicals (EDCs), such as estrogen, are the urgent pollutants to be managed. However, conventional wastewater treatment plants are not designed to treat these type of contaminants. Several studies have demonstrated that microalgae and cyanobacteria can be used in wastewater treatment which have the potential to degrade the estrogen.
    This study aims to use a cyanobacterium treatment system which is capable of fixing CO2 from flue gas, producing the biofuels (monosaccharides) and degrading the estrogen. A nitrogen starvation cultivation strategy was applied to achieve greater carbohydrate (monosaccharides) productivity with a thermophilic cyanobacterium Thermosynechococcus sp. CL-1 (TCL-1) culture, and evaluating the effect of E2 on monosaccharides production and CO2 fixation under various E2 concentrations.
    In the assay of nitrogen starvation, the results show that the optimal monosaccharide content and productivity are 39.1% and 35.4 mg/L/h, respectively, under 0.58 mM initial nitrate concentration with 2,000 μE/m2/s light intensity. The optimal biomass productivity and CO2 fixation rate are 96.9 mg/L/h and 145.1 mg/L/h, respectively, under 2.9 mM initial nitrate concentration with 2,000 μE/m2/s light intensity. In the assay of various estrogen concentrations, the results show that E2 concentration immediately drops and is readily transformed into estrone (E1), then E1 is degraded by TCL-1 in the cultivation system. The highest estrogen removal efficiency and degradation rate constant by TCL-1 are 69.4% and 0.0765 h-1, respectively, under 1.0 mg/L initial E2 concentration with 2,000 μE/m2/s light intensity. The highest estrogen removal rate by TCL-1 is 0.201 mg/L/h under 5.0 mg/L initial E2 concentration with 2,000 μE/m2/s light intensity. The addition of E2 concentration until 5.0 mg/L has a minor impact on the physiological metabolism and monosaccharides content of TCL-1.

    摘要 I Abstract II 致謝 IV Content VI List of Figures X List of Tables XIV Abbreviations XVI Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Objectives 3 Chapter 2 Literature Review 5 2-1 Global warming 5 2-1-1 CO2 sequestration methods 7 2-2 Photosynthesis 8 2-2-1 Light-dependent reaction 9 2-2-2 Light-independent reaction 10 2-3 Cyanobacteria 12 2-3-1 Cyanobacteria for CO2 biofixation 13 2-4 Estrogen 15 2-4-1 Physicochemical properties of estrogens 18 2-4-2 Cyanobacteria for estrogen degradation 20 2-5 Biofuel 22 2-5-1 Bioethanol 23 2-5-2 Pretreatment and Saccharification 25 2-5-3 Nitrogen starvation 27 Chapter 3 Materials and method 28 3-1 Thermosynechococcus sp. CL-1 28 3-2 Chemical and Materials 29 3-2-1 Medium 29 3-2-2 Chemical for estrogen analysis 31 3-2-3 Chemical for biochemical composition analysis 31 3-2-4 Chemical for monosaccharides analysis 32 3-3 Experimental equipment 33 3-3-1 Cultivation equipment 33 3-3-2 Analysis equipment 35 3-3-3 Other equipment 37 3-4 Experimental Methods 39 3-4-1 Experimental process 39 3-4-2 Photosynthesis bioreactor 40 3-4-3 Conservation 41 3-4-4 Biomass source cultivation 42 3-4-5 Batch cultivation 43 3-5 Analysis method 44 3-5-1 Biomass concentration analysis 44 3-5-2 Specific growth rate and biomass productivity 45 3-5-3 CO2 fixation rate analysis 46 3-5-4 Estrogen removal by TCL-1 47 3-5-5 Estrogen analysis 48 3-5-6 Monosaccharides analysis 50 3-6 Kinetic model 52 3-6-1 The pseudo-first-order kinetics 52 3-6-2 Response surface methodology (RSM) 53 Chapter 4 Results and Discussion 54 4-1 Effect of hydrolysis methods on monosaccharides yield 54 4-2 Solid-phase extraction (SPE) recovery of estrogens 57 4-3 Monosaccharides productivity improvement by nitrate starvation 59 4-3-1 Effect of initial nitrate concentration on biomass productivity 59 4-3-2 Effect of initial nitrate concentration on medium utilization 63 4-3-3 Effect of initial nitrate concentration on cell elemental contents and CO2 fixation rate 66 4-3-4 Effect of initial nitrate concentration on monosaccharides productivity 71 4-4 Effect of initial 17β-estradiol concentration 79 4-4-1 Biomass productivity 79 4-4-2 Medium utilization 85 4-4-3 Elemental contents and CO2 fixation rate 88 4-4-4 Estrogen degradation 91 4-4-5 Validation of the pseudo-first-order kinetics model 102 4-4-6 Comparison with other studies 103 4-4-7 Monosaccharides productivity 105 4-5 Evaluation of the combined effects of initial nitrate and E2 concentration on total monosaccharides content and productivity, biomass productivity and CO2 fixation rate. 109 4-5-1 Total monosaccharides content and productivity 109 4-5-2 Biomass productivity and CO2 fixation rate 110 Chapter 5 Conclusion and Suggestion 111 5-1 Conclusion 111 5-2 Suggestion 112 Reference 113

    Adeel, M., X. Song, Y. Wang, D. Francis and Y. Yang (2017). "Environmental impact of estrogens on human, animal and plant life: A critical review." Environment International 99: 107-119.

    Alalwan, H. A., A. H. Alminshid and H. A. S. Aljaafari (2019). "Promising evolution of biofuel generations. Subject review." Renewable Energy Focus 28: 127-139.

    Ambrogiano, C., H. Chawla, E. Elhaimer, N. Kokan and V. Soh (2016). "The effect of increasing light intensity on oxygen production in Chlamydomonas reinhardtii." The Expedition 5.

    Anjos, M., B. D. Fernandes, A. A. Vicente, J. A. Teixeira and G. Dragone (2013). "Optimization of CO2 bio-mitigation by Chlorella vulgaris." Bioresource Technology 139: 149-154.

    Annamalai, J. and V. Namasivayam (2015). "Endocrine disrupting chemicals in the atmosphere: Their effects on humans and wildlife." Environment International 76: 78-97.

    Aris, A. Z., A. S. Shamsuddin and S. M. Praveena (2014). "Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review." Environment International 69: 104-119.

    Ashida, H. and A. Yokota (2011). 4.13 - Increasing Photosynthesis/RuBisCO and CO2-Concentrating Mechanisms. Comprehensive Biotechnology (Second Edition). M. Moo-Young. Burlington, Academic Press: 165-176.

    Balina, K., M. Balode, L. Muzikante and D. Blumberga (2015). "Impact of synthetic hormone 17α-ethinylestradiol on growth of microalgae Desmodesmus communis." Agronomy Research 13(2): 445-454.

    Barber, J. and M. D. Archer (2001). "P680, the primary electron donor of photosystem II." Journal of Photochemistry and Photobiology A: Chemistry 142(2): 97-106.

    Barber, L. B., J. L. Rapp, C. Kandel, S. H. Keefe, J. Rice, P. Westerhoff, D. W. Bertolatus and A. M. Vajda (2019). "Integrated Assessment of Wastewater Reuse, Exposure Risk, and Fish Endocrine Disruption in the Shenandoah River Watershed." Environmental science & technology 53(7): 3429-3440.

    Becker, D., S. Rodriguez-Mozaz, S. Insa, R. Schoevaart, D. Barceló, M. de Cazes, M.-P. Belleville, J. Sanchez-Marcano, A. Misovic, J. Oehlmann and M. Wagner (2017). "Removal of Endocrine Disrupting Chemicals in Wastewater by Enzymatic Treatment with Fungal Laccases." Organic Process Research & Development 21(4): 480-491.

    Bergman, A., J. J. Heindel, T. Kasten, K. A. Kidd, S. Jobling, M. Neira, R. T. Zoeller, G. Becher, P. Bjerregaard, R. Bornman, I. Brandt, A. Kortenkamp, D. Muir, M.-N. B. Drisse, R. Ochieng, N. E. Skakkebaek, A. S. Byléhn, T. Iguchi, J. Toppari and T. J. Woodruff (2013). "The impact of endocrine disruption: a consensus statement on the state of the science." Environmental health perspectives 121(4): A104-A106.

    Bowyer, J. R. and R. C. Leegood (1997). 2 - Photosynthesis. Plant Biochemistry. P. M. Dey and J. B. Harborne. London, Academic Press: 49-p44.

    Braga, V. d. S., J. B. Moreira, J. A. V. Costa and M. G. d. Morais (2019). "Enhancement of the carbohydrate content in Spirulina by applying CO2, thermoelectric fly ashes and reduced nitrogen supply." International Journal of Biological Macromolecules 123: 1241-1247.

    Chen, H.-h. (2009). "CO2-fixation by a Cyanobacterial strain, Thermosynechococcus sp. CL-1, and its Potential Bioenergy Composition Analysis." National Cheng Kung University: 1-190.

    Chen, W., M. Xue, F. Xue, X. Mu, Z. Xu, Z. Meng, G. Zhu and K. J. Shea (2015). "Molecularly imprinted hollow spheres for the solid phase extraction of estrogens." Talanta 140: 68-72.

    Chen, X., X. Zhang, J. A. Church, C. S. Watson, M. A. King, D. Monselesan, B. Legresy and C. Harig (2017). "The increasing rate of global mean sea-level rise during 1993–2014." Nature Climate Change 7: 492.

    Chen, Y.-d., S. Li, S.-H. Ho, C. Wang, Y.-C. Lin, D. Nagarajan, J.-S. Chang and N.-q. Ren (2018). "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery." Renewable and Sustainable Energy Reviews 96: 76-90.

    Cheng, D. L., H. H. Ngo, W. S. Guo, Y. W. Liu, J. L. Zhou, S. W. Chang, D. D. Nguyen, X. T. Bui and X. B. Zhang (2018). "Bioprocessing for elimination antibiotics and hormones from swine wastewater." Science of The Total Environment 621: 1664-1682.

    Chowdhury, R. R., P. A. Charpentier and M. B. Ray (2011). "Photodegradation of 17β-estradiol in aquatic solution under solar irradiation: Kinetics and influencing water parameters." Journal of Photochemistry and Photobiology A: Chemistry 219(1): 67-75.

    Czarny, K., D. Szczukocki, B. Krawczyk, S. Skrzypek, E. Miękoś and R. Gadzała-Kopciuch (2019). "Inhibition of growth of Anabaena variabilis population by single and mixed steroid hormones." Journal of Applied Phycology 31(1): 389-398.

    Czarny, K., D. Szczukocki, B. Krawczyk, S. Skrzypek, M. Zieliński and R. Gadzała-Kopciuch (2019). "Toxic effects of single animal hormones and their mixtures on the growth of Chlorella vulgaris and Scenedesmus armatus." Chemosphere 224: 93-102.

    Daroch, M., S. Geng and G. Wang (2013). "Recent advances in liquid biofuel production from algal feedstocks." Applied Energy 102: 1371-1381.

    De Philippis, R. and M. J. F. M. R. Vincenzini (1998). "Exocellular polysaccharides from cyanobacteria and their possible applications." 22(3): 151-175.

    de Wilt, A., A. Butkovskyi, K. Tuantet, L. H. Leal, T. V. Fernandes, A. Langenhoff and G. Zeeman (2016). "Micropollutant removal in an algal treatment system fed with source separated wastewater streams." Journal of Hazardous Materials 304: 84-92.

    Deb, D., N. Mallick and P. B. S. Bhadoria (2019). "Analytical studies on carbohydrates of two cyanobacterial species for enhanced bioethanol production along with poly-β-hydroxybutyrate, C-phycocyanin, sodium copper chlorophyllin, and exopolysaccharides as co-products." Journal of Cleaner Production 221: 695-709.

    Dragone, G., B. D. Fernandes, A. P. Abreu, A. A. Vicente and J. A. Teixeira (2011). "Nutrient limitation as a strategy for increasing starch accumulation in microalgae." Applied Energy 88(10): 3331-3335.

    Durall, C. and P. Lindblad (2015). "Mechanisms of carbon fixation and engineering for increased carbon fixation in cyanobacteria." Algal Research 11: 263-270.

    Ellis, J. T., N. N. Hengge, R. C. Sims and C. D. Miller (2012). "Acetone, butanol, and ethanol production from wastewater algae." Bioresource Technology 111: 491-495.

    Enamala, M. K., S. Enamala, M. Chavali, J. Donepudi, R. Yadavalli, B. Kolapalli, T. V. Aradhyula, J. Velpuri and C. Kuppam (2018). "Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae." Renewable and Sustainable Energy Reviews 94: 49-68.

    Fischer, E. M. and R. Knutti (2015). "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes." Nature Climate Change 5(6): 560-564.

    Fitzgerald, G. P., G. C. Gerloff and F. Skoog (1952). "Studies on chemicals with selective toxicity to blue-green algae." Sewage and Industrial Wastes: 888-896.

    Gañán, J., D. Pérez-Quintanilla, S. Morante-Zarcero and I. Sierra (2013). "Comparison of different mesoporous silicas for off-line solid phase extraction of 17β-estradiol from waters and its determination by HPLC-DAD." Journal of Hazardous Materials 260: 609-617.

    Gao, Q. T., Y. S. Wong and N. F. Y. Tam (2011). "Removal and biodegradation of nonylphenol by different Chlorella species." Marine Pollution Bulletin 63(5–12): 445-451.

    González-Fernández, C. and M. Ballesteros (2012). "Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation." Biotechnology Advances 30(6): 1655-1661.

    Harmsen, P., W. Huijgen, L. Bermudez and R. Bakker (2010). Literature review of physical and chemical pretreatment processes for lignocellulosic biomass, Wageningen UR-Food & Biobased Research.

    He, Y., T. Wang, F. Sun, L. Wang and R. Ji (2019). "Effects of veterinary antibiotics on the fate and persistence of 17β-estradiol in swine manure." Journal of Hazardous Materials 375: 198-205.

    Heidorn, T., D. Camsund, H.-H. Huang, P. Lindberg, P. Oliveira, K. Stensjö and P. Lindblad (2011). Chapter Twenty-Four - Synthetic Biology in Cyanobacteria: Engineering and Analyzing Novel Functions. Methods in Enzymology. C. Voigt, Academic Press. 497: 539-579.

    Ho, S.-H., S.-W. Huang, C.-Y. Chen, T. Hasunuma, A. Kondo and J.-S. Chang (2013). "Bioethanol production using carbohydrate-rich microalgae biomass as feedstock." Bioresource Technology 135: 191-198.

    Hom-Diaz, A., M. Llorca, S. Rodríguez-Mozaz, T. Vicent, D. Barceló and P. Blánquez (2015). "Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification." Journal of Environmental Management 155: 106-113.

    Hsueh, H. T., H. Chu and C. C. Chang (2007). "Identification and characteristics of a cyanobacterium isolated from a hot spring with dissolved inorganic carbon." Environmental science & technology 41(6): 1909-1914.

    Jambo, S. A., R. Abdulla, S. H. Mohd Azhar, H. Marbawi, J. A. Gansau and P. Ravindra (2016). "A review on third generation bioethanol feedstock." Renewable and Sustainable Energy Reviews 65: 756-769.

    Jeung, E.-B. and K.-C. Choi (2010). "Toxicological mechanism of endocrine disrupting chemicals:is estrogen receptor involved?" Toxicological research 26(4): 237-243.

    Ji, M.-K., A. N. Kabra, J. Choi, J.-H. Hwang, J. R. Kim, R. A. I. Abou-Shanab, Y.-K. Oh and B.-H. Jeon (2014). "Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris." Ecological Engineering 73: 260-269.

    Kang, N.-Y. and J. B. Elsner (2018). "The changing validity of tropical cyclone warnings under global warming." npj Climate and Atmospheric Science 1(1): 36.

    Kassim, M. A. and T. K. Meng (2017). "Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production." Science of The Total Environment 584-585: 1121-1129.

    Khanal, S. K., B. Xie, M. L. Thompson, S. Sung, S.-K. Ong and J. van Leeuwen (2006). "Fate, Transport, and Biodegradation of Natural Estrogens in the Environment and Engineered Systems." Environmental science & technology 40(21): 6537-6546.

    Kumar, D., P. Kaštánek and S. P. Adhikary (2018). Exopolysaccharides from cyanobacteria and microalgae and their commercial application.

    Kumar, K., C. N. Dasgupta, B. Nayak, P. Lindblad and D. Das (2011). "Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria." Bioresource Technology 102(8): 4945-4953.

    Lackner, K. S. (2003). "A Guide to CO2 Sequestration." Science 300(5626): 1677.

    Lai, K. M., M. D. Scrimshaw and J. N. Lester (2002). "Biotransformation and Bioconcentration of Steroid Estrogens by Chlorella vulgaris " Applied and Environmental Microbiology 68(2): 859-864.

    Lam, M. K. and K. T. Lee (2015). Chapter 12 - Bioethanol Production from Microalgae. Handbook of Marine Microalgae. S.-K. Kim. Boston, Academic Press: 197-208.

    Lee, O. K., D. H. Seong, C. G. Lee and E. Y. Lee (2015). "Sustainable production of liquid biofuels from renewable microalgae biomass." Journal of Industrial and Engineering Chemistry 29: 24-31.

    Leong, W.-H., J.-W. Lim, M.-K. Lam, Y. Uemura and Y.-C. Ho (2018). "Third generation biofuels: A nutritional perspective in enhancing microbial lipid production." Renewable and Sustainable Energy Reviews 91: 950-961.

    Leung, D. Y. C., G. Caramanna and M. M. Maroto-Valer (2014). "An overview of current status of carbon dioxide capture and storage technologies." Renewable and Sustainable Energy Reviews 39: 426-443.

    Liang, Y., M. B. Kaczmarek, A. K. Kasprzak, J. Tang, M. M. R. Shah, P. Jin, A. Klepacz-Smółka, J. J. Cheng, S. Ledakowicz and M. Daroch (2018). "Thermosynechococcaceae as a source of thermostable C-phycocyanins: properties and molecular insights." Algal Research 35: 223-235.

    Liang, Y., J. Tang, Y. Luo, M. B. Kaczmarek, X. Li and M. Daroch (2019). "Thermosynechococcus as a thermophilic photosynthetic microbial cell factory for CO2 utilisation." Bioresource Technology 278: 255-265.

    Liu, Y., Y. Guan, Q. Gao, N. F. Y. Tam and W. Zhu (2010). "Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta." Chemosphere 80(5): 592-599.

    Láinez, M., H. A. Ruiz, M. Arellano-Plaza and S. Martínez-Hernández (2019). "Bioethanol production from enzymatic hydrolysates of Agave salmiana leaves comparing S. cerevisiae and K. marxianus." Renewable Energy 138: 1127-1133.

    Möllers, K. B., D. Cannella, H. Jørgensen and N.-U. Frigaard (2014). "Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation." Biotechnology for Biofuels 7(1): 64.

    Madigan, M. T., J. M. Martinko and J. Parker (1997). Brock biology of microorganisms, Prentice hall Upper Saddle River, NJ.

    Mathimani, T., A. Baldinelli, K. Rajendran, D. Prabakar, M. Matheswaran, R. Pieter van Leeuwen and A. Pugazhendhi (2019). "Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: Process evaluation and knowledge gaps." Journal of Cleaner Production 208: 1053-1064.

    Mathiot, C., P. Ponge, B. Gallard, J.-F. Sassi, F. Delrue and N. Le Moigne (2019). "Microalgae starch-based bioplastics: Screening of ten strains and plasticization of unfractionated microalgae by extrusion." Carbohydrate Polymers 208: 142-151.

    Medipally, S. R., F. M. Yusoff, S. Banerjee and M. Shariff (2015). "Microalgae as sustainable renewable energy feedstock for biofuel production." BioMed research international 2015.

    Milano, J., H. C. Ong, H. H. Masjuki, W. T. Chong, M. K. Lam, P. K. Loh and V. Vellayan (2016). "Microalgae biofuels as an alternative to fossil fuel for power generation." Renewable and Sustainable Energy Reviews 58: 180-197.

    Ming Su, C., H. T. Hsueh, C. Ming Tseng, D. Tong Ray, Y. Hwei Shen and H. Chu (2017). Effects of Nutrient Availability on the Biomass Production and CO2 Fixation in a Flat Plate Photobioreactor.

    Nair, S. and G. Sachdeva (2018). "Estrogen matters in metastasis." Steroids 138: 108-116.

    NASA Goddard Institute for Space Studies. (2018). "Global mean annual mean land‐ocean temperature index." from https://data.giss.nasa.gov/gistemp/graphs/.

    Nayak, M., W. I. Suh, Y. K. Chang and B. Lee (2019). "Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2." Bioresource Technology 276: 110-118.

    Nelson, N. (2011). "Photosystems and global effects of oxygenic photosynthesis." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1807(8): 856-863.

    NOAAESRL (2017). "Trends in Atmospheric Carbon Dioxide." from (www.esrl.noaa.gov/gmd/ccgg/trends/).

    Noreña-Caro, D. and M. G. Benton (2018). "Cyanobacteria as photoautotrophic biofactories of high-value chemicals." Journal of CO2 Utilization 28: 335-366.

    OpenStax (2015). “Using Light Energy to Make Organic Molecules.” OpenStax CNX. http://cnx.org/contents/36b3469d-e561-44ff-ac32-99f4d18830e2@8

    Pacheco-Basulto, J. Á., D. Hernández-McConville, F. O. Barroso-Muñoz, S. Hernández, J. G. Segovia-Hernández, A. J. Castro-Montoya and A. Bonilla-Petriciolet (2012). "Purification of bioethanol using extractive batch distillation: Simulation and experimental studies." Chemical Engineering and Processing: Process Intensification 61: 30-35.

    Pallardy, S. G. (2008). CHAPTER 5 - Photosynthesis. Physiology of Woody Plants (Third Edition). S. G. Pallardy. San Diego, Academic Press: 107-167.

    Parladé, E., A. Hom-Diaz, P. Blánquez, M. Martínez-Alonso, T. Vicent and N. Gaju (2018). "Effect of cultivation conditions on β-estradiol removal in laboratory and pilot-plant photobioreactors by an algal-bacterial consortium treating urban wastewater." Water Research 137: 86-96.

    Paudel, S. R., S. P. Banjara, O. K. Choi, K. Y. Park, Y. M. Kim and J. W. Lee (2017). "Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges." Bioresource Technology 245: 1194-1205.

    Perron, M.-C. and P. Juneau (2011). "Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria." Environmental Research 111(4): 520-529.

    Peters, G. P., C. Le Quéré, R. M. Andrew, J. G. Canadell, P. Friedlingstein, T. Ilyina, R. B. Jackson, F. Joos, J. I. Korsbakken, G. A. McKinley, S. Sitch and P. Tans (2017). "Towards real-time verification of CO2 emissions." Nature Climate Change 7(12): 848-850.

    Pinto, T., L. Gouveia, J. Ortigueira, G. D. Saratale and P. Moura (2018). "Enhancement of fermentative hydrogen production from Spirogyra sp. by increased carbohydrate accumulation and selection of the biomass pretreatment under a biorefinery model." Journal of Bioscience and Bioengineering 126(2): 226-234.

    Qi, X., Y. Ren, P. Liang and X. Wang (2018). "New insights in photosynthetic microbial fuel cell using anoxygenic phototrophic bacteria." Bioresource Technology 258: 310-317.

    Rossi, F. and R. De Philippis (2015). "Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats." Life (Basel, Switzerland) 5(2): 1218-1238.

    Saladini, F., N. Patrizi, F. M. Pulselli, N. Marchettini and S. Bastianoni (2016). "Guidelines for emergy evaluation of first, second and third generation biofuels." Renewable and Sustainable Energy Reviews 66: 221-227.

    Sami, N. and T. Fatma (2019). "Studies on estrone biodegradation potential of cyanobacterial species." Biocatalysis and Agricultural Biotechnology 17: 576-582.

    Shokrkar, H., S. Ebrahimi and M. Zamani (2017). "Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture." Fuel 200: 380-386.

    Shokrkar, H., S. Ebrahimi and M. Zamani (2018). "Enzymatic hydrolysis of microalgal cellulose for bioethanol production, modeling and sensitivity analysis." Fuel 228: 30-38.

    Sibi, G., V. Shetty and K. Mokashi (2016). "Enhanced lipid productivity approaches in microalgae as an alternate for fossil fuels – A review." Journal of the Energy Institute 89(3): 330-334.

    Silva, C. P., M. Otero and V. Esteves (2012). "Processes for the elimination of estrogenic steroid hormones from water: A review." Environmental Pollution 165: 38-58.

    Sims, R. E. H., W. Mabee, J. N. Saddler and M. Taylor (2010). "An overview of second generation biofuel technologies." Bioresource Technology 101(6): 1570-1580.

    Sirajunnisa, A. R. and D. Surendhiran (2016). "Algae – A quintessential and positive resource of bioethanol production: A comprehensive review." Renewable and Sustainable Energy Reviews 66: 248-267.

    Sluiter, A. (2012). Determination of structural carbohydrates and lignin in biomass: laboratory analytical procedure (LAP): Issue Date, April 2008, Revision Date: August 2012 (Version 08-03-2012), National Renewable Energy Laboratory.

    Sornalingam, K., A. McDonagh and J. L. Zhou (2016). "Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: Progress and future challenges." Science of The Total Environment 550: 209-224.

    Stebegg, R., G. Schmetterer and A. Rompel (2019). "Transport of organic substances through the cytoplasmic membrane of cyanobacteria." Phytochemistry 157: 206-218.

    Sun, X., Y. Cao, H. Xu, Y. Liu, J. Sun, D. Qiao and Y. Cao (2014). "Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process." Bioresource Technology 155: 204-212.

    SundarRajan, P., K. P. Gopinath, D. Greetham and A. J. Antonysamy (2019). "A review on cleaner production of biofuel feedstock from integrated CO2 sequestration and wastewater treatment system." Journal of Cleaner Production 210: 445-458.

    Takeuchi, T., K. Utsunomiya, K. Kobayashi, M. Owada and I. Karube (1992). "Carbon dioxide fixation by a unicellular green alga Oocystis sp." Journal of biotechnology 25(3): 261-267.

    Thermo-Fisher-Scientific "Thermo Scientific HyperSep Solid Phase Extraction Method Development Guide."

    Treviño, L. S., Q. Wang and C. L. Walker (2015). "Hypothesis: Activation of rapid signaling by environmental estrogens and epigenetic reprogramming in breast cancer." Reproductive Toxicology 54: 136-140.

    Umamaheswari, J. and S. Shanthakumar (2016). "Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity." Reviews in Environmental Science and Bio/Technology 15(2): 265-284.

    Van der Grinten, E., M. G. Pikkemaat, E.-J. van den Brandhof, G. J. Stroomberg and M. H. S. Kraak (2010). "Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics." Chemosphere 80(1): 1-6.

    Vohra, M., J. Manwar, R. Manmode, S. Padgilwar and S. Patil (2014). "Bioethanol production: Feedstock and current technologies." Journal of Environmental Chemical Engineering 2(1): 573-584.

    Wcrp Global Sea Level Budget Group. (2018). "Global sea-level budget 1993–present." Earth Syst. Sci. Data 10(3): 1551-1590.

    WHO, U. (2013). State of the science of endocrine disrupting chemicals.

    Xiong, J.-Q., M. B. Kurade, R. A. I. Abou-Shanab, M.-K. Ji, J. Choi, J. O. Kim and B.-H. Jeon (2016). "Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate." Bioresource Technology 205: 183-190.

    Xiong, J.-Q., M. B. Kurade and B.-H. Jeon (2018). "Can Microalgae Remove Pharmaceutical Contaminants from Water?" Trends in Biotechnology 36(1): 30-44.

    Yang, L., Q. Cheng, N. F. Y. Tam, L. Lin, W. Su and T. Luan (2016). "Contributions of Abiotic and Biotic Processes to the Aerobic Removal of Phenolic Endocrine-Disrupting Chemicals in a Simulated Estuarine Aquatic Environment." Environmental science & technology 50(8): 4324-4334.

    Yasin, D., M. Zafaryab, S. Ansari, N. Ahmad, N. F. Khan, A. Zaki, M. M. Alam Rizvi and T. Fatma (2019). "Evaluation of antioxidant and anti-proliferative efficacy of Nostoc muscorum NCCU-442." Biocatalysis and Agricultural Biotechnology 17: 284-293.

    Yu, C.-P., R. A. Deeb and K.-H. Chu (2013). "Microbial degradation of steroidal estrogens." Chemosphere 91(9): 1225-1235.

    Yu, R., P. Zhai and Y. Chen (2018). "Facing climate change-related extreme events in megacities of China in the context of 1.5°C global warming." Current Opinion in Environmental Sustainability 30: 75-81.

    Yuan, Z., Y. Wen and G. Li (2018). "Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment." Bioresource Technology 259: 228-236.

    Zhang, C.-C., C.-Z. Zhou, R. L. Burnap and L. Peng (2018). "Carbon/Nitrogen Metabolic Balance: Lessons from Cyanobacteria." Trends in Plant Science 23(12): 1116-1130.

    Zhang, Y., M. Y. Habteselassie, E. P. Resurreccion, V. Mantripragada, S. Peng, S. Bauer and L. M. Colosi (2014). "Evaluating Removal of Steroid Estrogens by a Model Alga as a Possible Sustainability Benefit of Hypothetical Integrated Algae Cultivation and Wastewater Treatment Systems." ACS Sustainable Chemistry & Engineering 2(11): 2544-2553.

    Zhao, L., Q. Wu and A. Ma (2018). "Biodegradation of Phenolic Contaminants: Current Status and Perspectives." IOP Conference Series: Earth and Environmental Science 111: 012024.

    Zhao, Y., H.-P. Wang, B. Han and X. Yu (2019). "Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: A review." Bioresource Technology 274: 549-556.

    Zheng, W., X. Li, S. R. Yates and S. A. Bradford (2012). "Anaerobic transformation kinetics and mechanism of steroid estrogenic hormones in dairy lagoon water." Environmental science & technology 46(10): 5471-5478.

    Zhou, W., J. Wang, P. Chen, C. Ji, Q. Kang, B. Lu, K. Li, J. Liu and R. Ruan (2017). "Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives." Renewable and Sustainable Energy Reviews 76: 1163-1175.

    Żwir-Ferenc, A. and M. Biziuk (2006). "Solid phase extraction technique–trends, opportunities and applications." Polish Journal of Environmental Studies 15(5): 677-690.

    無法下載圖示 校內:2024-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE