| 研究生: |
鄭達恩 Cheng, Da-En |
|---|---|
| 論文名稱: |
Ras正向調控基因RbAp46和BNIP3之調控機制與Ras引發細胞之自體吞噬作用 The regulation of Ras upregulated RbAp46 and BNIP3 genes and Ras induced autophagy |
| 指導教授: |
劉校生
Liu, Hsiao-Shien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | RbAp46 、BNIP3 、Ras |
| 外文關鍵詞: | Ras, BNIP3, RbAp46 |
| 相關次數: | 點閱:78 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Ras可以表現出許多致癌基因的特性,包括造成細胞增生,抑制細胞凋亡和促進腫瘤的血管新生和轉移。視網膜細胞瘤(Rb)抑癌基因第46相關蛋白質(RbAp46)首先在Hela細胞中被鑑定出來,可以與Rb親和力管柱結合。以前的研究顯示RbAp46為可以和組織蛋白結合的次單位,參與染色質的重組,像是組織蛋白乙醯化或去乙醯化酵素都可藉其與組織蛋白結合。一些研究顯示Ras可以促進組織蛋白去乙醯(HDACs)結合Sp1的是經由細胞外信號傳遞激(ERK)路徑。我們的實驗室已經證明RbAp46的大量表現也能促進HDAC1 和Sp1之間的結合。本研究發現Ras能促使 RbAp46表現上升。進一步研究顯示Ras調控 RbAp46的信息傳遞路徑是透過Raf/MEK路徑啟動RbAp46啟動子,並且是透過RbAp46啟動子上-290 和-239之間的轉錄因子結合位。另一個基因, 在Bcl-2家族裡屬於僅有BH3的蛋白質的BNIP3。之前BNIP3已經被報告參與細胞之自體吞噬和細胞之死亡路徑中。前人發現Ras能夠促進BNIP3表現,本實驗室以BNIP3啟動子冷光報導基因活性確認,並進一步證明此一活化作用是經由MAPK路徑來進行。而且我們也在具有可調控Ha-rasV12的細胞株中證明Ras能引起LC3-GFP 聚集及自體吞噬作用。同時也以BNIP3 的siRNA證明了Ras是透過促進 BNIP3表現而引起細胞的自體吞噬作用。
Ras shows oncogenic characteristics toward the biological functions, including induction of the cell proliferation, inhibition of apoptosis, and facilitating angiogenesis and metastasis of tumors. The retinoblastoma (Rb) suppressor associated protein 46 (RbAp46) was first identified as a protein in HeLa cells that binds to an Rb affinity column. Previous studies showed that RbAp46 functions as a core-histone-binding subunit that targets chromatin assembly factors, chromatin-remodeling factors, histone acetyltransferase and deacetylase to their histone substrates in chromatin. Some studies showed that Ras activation induces the binding of histone deacetylases (HDACs) to Sp1 to suppress the RECK expression via extracellular signal-regulated kinase (ERK). Our laboratory has demonstrated that overexpression of RbAp46 could enhance the binding between HDAC1 and Sp1. In this study, we showed that Ras could upregulate RbAp46 promoter. We further studied the signaling pathway utilized by Ras to regulates RbAp46 by analyzing RbAp46 promoter activity. Our data showed that Ras may activate RbAp46 promoter through Raf/MEK pathway which is also required for inhibition of RECK expression. Ras upregulates RbAp46 promoter activity is through TA binding sites between -290 and -239 in the RbAp46 promoter. BNIP3, a BH3-only protein in the Bcl-2 family, has been reported to play a role in autophagy, as well as cell death pathway. We found that ras oncogene upregulates the BNIP3 expression analyzed by BNIP3 promoter assay and Western blotting. Further study demonstrated that MAPK pathway is required. Moreover, we demonstrated that Ras induces the LC3-GFP aggregation and autophagy in two stable cell lines harboring an inducible Ha-rasV12 in a time-dependent manner. In contrast, suppression of BNIP3 by BNIP3 siRNA blocked the autoaphgy induced by Ras, suggesting that Ras is through upregulating BNIP3 to induce autophagy in the cells.
1. Bourne, H.R., Sanders, D.A. and McCormick, F. (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature, 349, 117-27.
2. Quilliam, L.A., Rebhun, J.F. and Castro, A.F. (2002) A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog Nucleic Acid Res Mol Biol, 71, 391-444.
3. Feig, L.A. and Buchsbaum, R.J. (2002) Cell signaling: life or death decisions of ras proteins. Curr Biol, 12, R259-61.
4. Bos, J.L. (1989) ras oncogenes in human cancer: a review. Cancer Res, 49, 4682-9.
5. Janes, P.W., Daly, R.J., deFazio, A. and Sutherland, R.L. (1994) Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene, 9, 3601-8.
6. Rodriguez-Viciana, P., Warne, P.H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M.J., Waterfield, M.D. and Downward, J. (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature, 370, 527-32.
7. Feig, L.A. (2003) Ral-GTPases: approaching their 15 minutes of fame. Trends Cell Biol, 13, 419-25.
8. Hamad, N.M., Elconin, J.H., Karnoub, A.E., Bai, W., Rich, J.N., Abraham, R.T., Der, C.J. and Counter, C.M. (2002) Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev, 16, 2045-57.
9. Chong, H., Vikis, H.G. and Guan, K.L. (2003) Mechanisms of regulating the Raf kinase family. Cell Signal, 15, 463-9.
10. Yordy, J.S. and Muise-Helmericks, R.C. (2000) Signal transduction and the Ets family of transcription factors. Oncogene, 19, 6503-13.
11. Qian, Y.W. and Lee, E.Y. (1995) Dual retinoblastoma-binding proteins with properties related to a negative regulator of ras in yeast. J Biol Chem, 270, 25507-13.
12. Zhang, Y., Iratni, R., Erdjument-Bromage, H., Tempst, P. and Reinberg, D. (1997) Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell, 89, 357-64.
13. Verreault, A., Kaufman, P.D., Kobayashi, R. and Stillman, B. (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell, 87, 95-104.
14. Zhang, Y., Ng, H.H., Erdjument-Bromage, H., Tempst, P., Bird, A. and Reinberg, D. (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev, 13, 1924-35.
15. Yarden, R.I. and Brody, L.C. (1999) BRCA1 interacts with components of the histone deacetylase complex. Proc Natl Acad Sci U S A, 96, 4983-8.
16. Chen, G.C., Guan, L.S., Yu, J.H., Li, G.C., Choi Kim, H.R. and Wang, Z.Y. (2001) Rb-associated protein 46 (RbAp46) inhibits transcriptional transactivation mediated by BRCA1. Biochem Biophys Res Commun, 284, 507-14.
17. Zhang, T.F., Yu, S.Q., Loggie, B.W. and Wang, Z.Y. (2003) Inducible expression of RbAp46 activates c-Jun NH2-terminal kinase-dependent apoptosis and suppresses progressive growth of tumor xenografts in nude mice. Anticancer Res, 23, 4621-7.
18. Li, G.C., Guan, L.S. and Wang, Z.Y. (2003) Overexpression of RbAp46 facilitates stress-induced apoptosis and suppresses tumorigenicity of neoplastigenic breast epithelial cells. Int J Cancer, 105, 762-8.
19. Zhang, T.F., Yu, S.Q., Deuel, T.F. and Wang, Z.Y. (2003) Constitutive expression of Rb associated protein 46 (RbAp46) reverts transformed phenotypes of breast cancer cells. Anticancer Res, 23, 3735-40.
20. Guan, L.S., Li, G.C., Chen, C.C., Liu, L.Q. and Wang, Z.Y. (2001) Rb-associated protein 46 (RbAp46) suppresses the tumorigenicity of adenovirus-transformed human embryonic kidney 293 cells. Int J Cancer, 93, 333-8.
21. Hu, S.Y., Chen, Z.X., Gu, W.Y., Cen, J.N. and Zhao, Y. (2005) High expression of RbAp46 gene in patients with acute leukemia or chronic myelogenous leukemia in blast crisis. Chin Med J (Engl), 118, 1295-8.
22. Boyd, J.M., Malstrom, S., Subramanian, T., Venkatesh, L.K., Schaeper, U., Elangovan, B., D'Sa-Eipper, C. and Chinnadurai, G. (1994) Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell, 79, 341-51.
23. Chen, G., Ray, R., Dubik, D., Shi, L., Cizeau, J., Bleackley, R.C., Saxena, S., Gietz, R.D. and Greenberg, A.H. (1997) The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J Exp Med, 186, 1975-83.
24. Ray, R., Chen, G., Vande Velde, C., Cizeau, J., Park, J.H., Reed, J.C., Gietz, R.D. and Greenberg, A.H. (2000) BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J Biol Chem, 275, 1439-48.
25. Vande Velde, C., Cizeau, J., Dubik, D., Alimonti, J., Brown, T., Israels, S., Hakem, R. and Greenberg, A.H. (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol, 20, 5454-68.
26. Daido, S., Kanzawa, T., Yamamoto, A., Takeuchi, H., Kondo, Y. and Kondo, S. (2004) Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res, 64, 4286-93.
27. Kanzawa, T., Zhang, L., Xiao, L., Germano, I.M., Kondo, Y. and Kondo, S. (2005) Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene, 24, 980-91.
28. Guo, K., Searfoss, G., Krolikowski, D., Pagnoni, M., Franks, C., Clark, K., Yu, K.T., Jaye, M. and Ivashchenko, Y. (2001) Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ, 8, 367-76.
29. Sowter, H.M., Ratcliffe, P.J., Watson, P., Greenberg, A.H. and Harris, A.L. (2001) HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res, 61, 6669-73.
30. Crow, M.T. (2002) Hypoxia, BNip3 proteins, and the mitochondrial death pathway in cardiomyocytes. Circ Res, 91, 183-5.
31. Kubasiak, L.A., Hernandez, O.M., Bishopric, N.H. and Webster, K.A. (2002) Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci U S A, 99, 12825-30.
32. Okami, J., Simeone, D.M. and Logsdon, C.D. (2004) Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res, 64, 5338-46.
33. Abe, T., Toyota, M., Suzuki, H., Murai, M., Akino, K., Ueno, M., Nojima, M., Yawata, A., Miyakawa, H., Suga, T., Ito, H., Endo, T., Tokino, T., Hinoda, Y. and Imai, K. (2005) Upregulation of BNIP3 by 5-aza-2'-deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death. J Gastroenterol, 40, 504-10.
34. Rothermund, C.A., Gopalakrishnan, V.K., Eudy, J.D. and Vishwanatha, J.K. (2005) Casodex treatment induces hypoxia-related gene expression in the LNCaP prostate cancer progression model. BMC Urol, 5, 5.
35. Murai, M., Toyota, M., Suzuki, H., Satoh, A., Sasaki, Y., Akino, K., Ueno, M., Takahashi, F., Kusano, M., Mita, H., Yanagihara, K., Endo, T., Hinoda, Y., Tokino, T. and Imai, K. (2005) Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer. Clin Cancer Res, 11, 1021-7.
36. Murai, M., Toyota, M., Satoh, A., Suzuki, H., Akino, K., Mita, H., Sasaki, Y., Ishida, T., Shen, L., Garcia-Manero, G., Issa, J.P., Hinoda, Y., Tokino, T. and Imai, K. (2005) Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours. Br J Cancer, 92, 1165-72.
37. Baetz, D., Regula, K.M., Ens, K., Shaw, J., Kothari, S., Yurkova, N. and Kirshenbaum, L.A. (2005) Nuclear factor-kappaB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes. Circulation, 112, 3777-85.
38. Klionsky, D.J. and Emr, S.D. (2000) Autophagy as a regulated pathway of cellular degradation. Science, 290, 1717-21.
39. Levine, B. and Klionsky, D.J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 6, 463-77.
40. Lum, J.J., DeBerardinis, R.J. and Thompson, C.B. (2005) Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol, 6, 439-48.
41. Ellington, A.A., Berhow, M.A. and Singletary, K.W. (2005) Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis.
42. Furuta, S., Hidaka, E., Ogata, A., Yokota, S. and Kamata, T. (2004) Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene, 23, 3898-904.
43. Pattingre, S., Bauvy, C. and Codogno, P. (2003) Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem, 278, 16667-74.
44. White, M.A., Nicolette, C., Minden, A., Polverino, A., Van Aelst, L., Karin, M. and Wigler, M.H. (1995) Multiple Ras functions can contribute to mammalian cell transformation. Cell, 80, 533-41.
45. Rodriguez-Viciana, P., Warne, P.H., Khwaja, A., Marte, B.M., Pappin, D., Das, P., Waterfield, M.D., Ridley, A. and Downward, J. (1997) Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell, 89, 457-67.
46. Heinemeyer, T., Wingender, E., Reuter, I., Hermjakob, H., Kel, A.E., Kel, O.V., Ignatieva, E.V., Ananko, E.A., Podkolodnaya, O.A., Kolpakov, F.A., Podkolodny, N.L. and Kolchanov, N.A. (1998) Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res, 26, 362-7.
47. Prestridge, D.S. (1995) Predicting Pol II promoter sequences using transcription factor binding sites. J Mol Biol, 249, 923-32.
48. Wang, Y.N. and Chang, W.C. (2003) Induction of disease-associated keratin 16 gene expression by epidermal growth factor is regulated through cooperation of transcription factors Sp1 and c-Jun. J Biol Chem, 278, 45848-57.
49. Kast, C., Wang, M. and Whiteway, M. (2003) The ERK/MAPK pathway regulates the activity of the human tissue factor pathway inhibitor-2 promoter. J Biol Chem, 278, 6787-94.
50. Liu, H.S., Chen, C.Y., Lee, C.H. and Chou, Y.I. (1998) Selective activation of oncogenic Ha-ras-induced apoptosis in NIH/3T3 cells. Br J Cancer, 77, 1777-86.
51. Liu, H.S., Scrable, H., Villaret, D.B., Lieberman, M.A. and Stambrook, P.J. (1992) Control of Ha-ras-mediated mammalian cell transformation by Escherichia coli regulatory elements. Cancer Res, 52, 983-9.
52. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J, 19, 5720-8.
53. Ohsumi, Y. (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol, 2, 211-6.
54. Tanida, I., Tanida-Miyake, E., Ueno, T. and Kominami, E. (2001) The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem, 276, 1701-6.
55. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. and Ohsumi, Y. (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell, 15, 1101-11.
56. Sasahara, R.M., Brochado, S.M., Takahashi, C., Oh, J., Maria-Engler, S.S., Granjeiro, J.M., Noda, M. and Sogayar, M.C. (2002) Transcriptional control of the RECK metastasis/angiogenesis suppressor gene. Cancer Detect Prev, 26, 435-43.
57. Kukushkin, A.N., Abramova, M.V., Svetlikova, S.B., Darieva, Z.A., Pospelova, T.V. and Pospelov, V.A. (2002) Downregulation of c-fos gene transcription in cells transformed by E1A and cHa-ras oncogenes: a role of sustained activation of MAP/ERK kinase cascade and of inactive chromatin structure at c-fos promoter. Oncogene, 21, 719-30.
58. Bharadwaj, S. and Prasad, G.L. (2002) Tropomyosin-1, a novel suppressor of cellular transformation is downregulated by promoter methylation in cancer cells. Cancer Lett, 183, 205-13.
59. Zhou, X., Richon, V.M., Wang, A.H., Yang, X.J., Rifkind, R.A. and Marks, P.A. (2000) Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras. Proc Natl Acad Sci U S A, 97, 14329-33.
60. Chang, H.C., Liu, L.T. and Hung, W.C. (2004) Involvement of histone deacetylation in ras-induced down-regulation of the metastasis suppressor RECK. Cell Signal, 16, 675-9.
61. Liu, Z.M. and Huang, H.S. (2006) As(2)O(3)-induced c-Src/EGFR/ERK signaling is via Sp1 binding sites to stimulate p21(WAF1/CIP1) expression in human epidermoid carcinoma A431 cells. Cell Signal, 18, 244-55.
62. Hewson, C.A., Edbrooke, M.R. and Johnston, S.L. (2004) PMA induces the MUC5AC respiratory mucin in human bronchial epithelial cells, via PKC, EGF/TGF-alpha, Ras/Raf, MEK, ERK and Sp1-dependent mechanisms. J Mol Biol, 344, 683-95.
63. Drosopoulos, K.G., Roberts, M.L., Cermak, L., Sasazuki, T., Shirasawa, S., Andera, L. and Pintzas, A. (2005) Transformation by oncogenic RAS sensitizes human colon cells to TRAIL-induced apoptosis by up-regulating death receptor 4 and death receptor 5 through a MEK-dependent pathway. J Biol Chem, 280, 22856-67.
64. Bruick, R.K. (2000) Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A, 97, 9082-7.
65. Lim, J.H., Lee, E.S., You, H.J., Lee, J.W., Park, J.W. and Chun, Y.S. (2004) Ras-dependent induction of HIF-1alpha785 via the Raf/MEK/ERK pathway: a novel mechanism of Ras-mediated tumor promotion. Oncogene, 23, 9427-31.
66. Wang, F.S., Wang, C.J., Chen, Y.J., Chang, P.R., Huang, Y.T., Sun, Y.C., Huang, H.C., Yang, Y.J. and Yang, K.D. (2004) Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem, 279, 10331-7.