簡易檢索 / 詳目顯示

研究生: 簡弘量
Chien, Hung-Liang
論文名稱: 光點陣列斜掃描無光罩式微影系統開發
Maskless Lithography Systems Based on Point Array Scanning Method
指導教授: 李永春
Lee, Yung-Chun
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 122
中文關鍵詞: UV光點陣列斜掃描無光罩微影數位微反射鏡裝置二維與三維微結構製作
外文關鍵詞: Digital Light Processing, Maskless Lithography, Photoresist Patterning, Three-Dimensional (3D) Microfabrication, Ultraviolet Exposure
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建構一套利用紫外光點陣列掃描的曝光系統以取代以光罩(photomask)為基礎的黃光微影技術,無論是二值光罩式(binary)或是多灰階光罩式(grayscale)的微影製程都可以透過本研究的曝光系統來完成。無光罩式曝光系統的優勢在於曝光圖形的設計與製作完全數位化,少了實體光罩的製作成本與時間,讓曝光變得快速且彈性,使無光罩式曝光系統擁有極大的靈活性。
    本論文之無光罩曝光系統的主要架構是由數位光調製技術裝置(Digital Light Process, DLP)、雙光學投影鏡頭、及自行研製的微透鏡與空間濾波器陣列(Micro-Lens and Spatial Filter Array, MLSFA)來完成。在本文中不僅完成紫外光點陣列斜掃描式系統的硬體建置,也包含2D與3D曝光圖形的演算法開發完成。本系統中使用波長405 nm之紫外光源,透過數位微反射鏡裝置(Digital Micromirror Device, DMD)控制每顆在試片表面上光點的開關及劑量;光束經由光學成像系統濾波並成像2D光點陣列於試片表面。陣列大小為124 92,涵蓋面積約為14 10.5 mm2,待曝光的光阻試片則由XYZ平台控制試片移動。利用演算後的圖檔輸入至控制板,DMD晶片搭配位移平台控制在不同的位置上產生預期的圖案。最後,二維圖形結果的部分以厚度2 μm的正光阻S1813來完成大面積50 100 mm2之電路圖形,最小線寬約10 μm左右,另外,厚度4的負光阻AZ P2070則用於完成對角線6.2吋大面積之20 μm直徑圓柱形(pillar)導光板結構。最後,本論文並提出以此無光罩式曝光系統製作三維結構圖形,其曝光結果部份有五種,(1). 以正光阻AZ P4562完成60 60 mm2面積之方狀楔形(ramp)導光板結構,其結構高度4 μm,特徵尺寸90 μm;(2). 250μm週期的同心圓弦波狀(sine wave),其面積為10 mm2,結構高度6 μm;(3). 菲涅耳透鏡(Fresnel lens)狀,其直徑為2 mm,結構高度4 μm;(4). 螺旋(helicoid)狀,其直徑為1 mm,結構高度4 μm;及(5). 八卦圖(Bagua)狀,其直徑為2 mm,結構高度4 μm等。由上述的任意結構之曝光結果驗證本研究的無光罩曝光系統於2D及3D等曝光之能力。

    This dissertation constructs an unconventional exposure system for two- or three-dimension photolithography so that a binary or grayscale photomask is no longer needed. This maskless lithography system is base on a projected UV light spot array with the oblique scanning method. It demonstrates the advantages that exempt the producing time and cost of the physical photomask because of the digitization of mask pattern. A faster and flexible of produced abilities in the maskless lithography system is robust.
    The constructed system consists of a UV light source, a digital micromirror device (DMD) clever opted in digital light process (DLP) technique, a microlens/pinhole array, two optical projection lenses, and a three-axis (XYZ) servo-controlled stage. The optical system can form a rectangular array of UV spots with a diameter of a few m directly on the surface of a sample sitting on the stage. A photoresist (PR) layer is coated on the sample surface. This UV exposure system can expose the whole area of the PR layer in a maskless manner by using an oblique scanning approach. Since the corresponding group of micromirrors can independently modulate the energy intensity of each UV spot in the DMD, a three-dimensional (3D) UV dosage distribution can be achieved through computer programming on the DMD and the XYZ stage. After PR developing processes, 3D PR microstructures with arbitrary patterns and/or surface profiles can be readily formed by this maskless lithography system. Afterward, the AZ4562 photoresist layer on the glass plate presents the five exposure results as (1). a lot of ramp structures are made for front light guide application, and each ramp dimension is around 90 μm2, depth is around 4 μm; (2). a 250 μm period of sine wave concentric circle structure, the pattern size is around 10 mm2 and the depth is around 6 μm; (3). a Fresnel lens-like of structure, each pattern diameter is around 2 mm and the depth is around 4 μm; (4). a helicoid structure, each pattern diameter is around 1 mm and the depth is around 4 μm; as well as (5). The Bagua map structure, each pattern diameter is around 2 mm and the depth is around 4 μm. Those experimental results as 2D and 3D microfabrication that show the maskless system in this dissertation address the arbitrary patterns successfully.

    Abstract I 摘要 III Table of Contents V Caption of Figures VIII Chapter 1 Introduction 1 1. 1 Motivation 1 1. 2 Literature Review 4 1. 3 Organization of Thesis 15 Chapter 2 Oblique Scanning Method in Maskless Lithography 17 2. 1 Basic Construction of Lithography System 17 2. 2 Introduction of Oblique Scanning Method 20 2. 3 2D Microstructure Pattern 22 2. 4 3D Microstructure Pattern 25 Chapter 3 Construction of Maskless Lithography System 27 3. 1 Digital Micromirrors Device, DMD 27 3. 2 UV-LED Light Source 32 3. 3 Reverse Total Internal Reflection Prism, RTIR 35 3. 4 1st and 2nd Projection Lens 42 3. 5 Microlens / Pinhole Array 45 3. 6 X-Y-Z Moving Stage 51 3. 7 Housing Design for the Light Engine 56 Chapter 4 Spot Array Correction with Distortion and Dosage 59 4. 1 Lens Distortion in Maskless Lithography System 59 4. 2 Distortion of the 2nd Projection Lens and Corrections 64 4. 2. 1 Lens characteristics and measurement 64 4. 2. 2 Correction method and lookup table construction 70 4. 2. 3 Patterning results with distortion correction 73 4. 3 Distortion of the 1st Projection Lens and Corrections 75 4. 4 Calibration Exposure Dosage of Each Spot 79 4. 5 Calibration Exposure Dosage with Spacing Discrepancy 82 Chapter 5 Experimental Result 86 5. 1 Arbitrary 2D Test Pattern 86 5. 1. 1 PCB pattern 87 5. 1. 2 Pillar dot for front light guide plate 90 5. 2 Arbitrary 3D Pattern 91 5. 2. 1 Concentric sine wave pattern 92 5. 2. 2 Ramp pattern 94 5. 2. 3 Helicoid pattern 97 5. 2. 4 Fresnel lens pattern 98 5. 2. 5 Bagua pattern 99 Chapter 6 Conclusions 100 6. 1 Conclusion 100 6. 2 Discussion and Future Works 105 Reference 108 Appendix 116 RTIR Prism Design 116

    [1] Mack, C., “Fundamental Principles of Optical Lithography: The Science of Microfabrication,” West Sussex, England: John Wiley & Sons Ltd., 2007.
    [2] Gil, D., Menon, R., Tang, X., Smith, H. I., Carter, D. J. D., “Parallel maskless optical lithography for prototyping, low-volume production, and research,” Journal of Vacuum Science & Technology B, vol. 20 (6), pp. 2597-2601, 2002.
    [3] Kim, K. R., Yi, J., Cho, S. H., Kang, N. H. , Cho, M. W., Shinn, B. S. , Choi, B., “SLM-based maskless lithography for TFT-LCD,” Appl Surf Sci, vol. 255 (18), pp.7835-7840, 2009.
    [4] Tseng, S. F., Cheng, P. Y., Hsiao, W. T., Chen, M. F., Chung, C. K., Wang, P. H., “High-performance graphene-based heaters fabricated using maskless ultraviolet laser patterning,” The International Journal of Advanced Manufacturing Technology, vol. 102, pp. 3011-3020, 2019.
    [5] Tamkin, J. M., “Evolution of catadioptric scan optics for wide-field high-resolution applications,” Proc. SPIE, vol. 5873, Optical Scanning, 2005.
    [6] Smeesters, L., Meulebroeck, W., Thienpont, H., “Design of an optical refocusing illumination system for use in lasers canning devices,” Proc. SPIE, vol. 10693, Illumination Optics V, vol. 1069302, 2018.
    [7] Zhang, H., Ren, Y., Liu, C., Zhu, J., “Flying spot laser triangulation scanner using lateral synchronization for surface profile precision measurement,” Applied Optics, vol. 53 (20), pp. 4405-4412, 2014.
    [8] Schille, J., Schneider, L., Streek, A., Kloetzer, S., Loeschner, U., “High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner,” Opt. Eng., vol. 55 (9) 096109, 2016.
    [9] Loor, R. D., “Polygon scanner system for ultra short pulsed laser micro-machining applications,” Physics Procedia, vol. 41 pp. 544-551, 2013.
    [10] Pease, R. F, “Maskless lithography,” Microelectronic Eng, vol. 78-79, pp.381-392, 2005.
    [11] Diez, S, “The next generation of maskless lithography,” Proc. SPIE, vol. 9761, 976102, 2016.
    [12] Itoh, T., Matsunaga, S., Okada, N., “Development of the laser beam scanner which uses the prism cube mirror with DMD,” Proceedings of 2015 IEEE Conference on Control Applications (CCA), Sydney, Australia, Sept. 21-23, 2015.
    [13] Groves, T. R., Pickard, D., Rafferty, B., Crosland, N., Adam, D., Schubert, G., “Maskless electron beam lithography: prospects, progress, and challenges,” Microelectronic Eng., vol. 61-62, pp. 285-293, 2002.
    [14] J.P. Morgan Securities LLC, Management & industry estimates, https://www.sec.gov/Archives/edgar/data/749037/000119312514268794/d754815d6k.htm?fbclid=IwAR0ulkT2OTfWPEnn60UtwK4dY4K1uVBWSgBnrcBm3bQAS-QyQsHljI8V_gE, accessed July 2014.
    [15] Hansotte, E. J., Carignan, E. C., Meisburger, W. D., “High speed maskless lithography of printed circuit boards using digital micromirrors,” Proc. of SPIE, vol. 7932, 793207, 2011.
    [16] Liu, C., Guo, X., Gao, F., Luo, B., Duan, X., Du, J., Qiu, C., “Imaging simulation of maskless lithography using a DMD TM,” Proc. SPIE, vol. 5645, pp. 307-314, 2005.
    [17] Xin, Z., Qixin, X., Wenmei, H., Fujii, Y., Maru, K., “Digital micro-mirror device based modulator for microscope illumination,” Physics Procedia, vol. 2, pp. 87-91, 2009.
    [18] Lee, D. H. “Optical system with 4 μm resolution for maskless lithography using digital micromirror device,” Journal of the Optical Society of Korea, vol. 14 (3), pp. 266-276, 2010.
    [19] Cheng, Y. L., Li, M. L., Lin, J. H., Lai, J. H., Ke, C. T., Huang, Y. C., “Development of dynamic mask photolithography system,” Proceedings of 2005 IEEE International Conference on Mechatronics, Taipei, Taiwan, July 10-12, 2005.
    [20] Hur, J.Y., Seo, M. S., “Optical Proximity Corrections for Digital Micromirror Device-based Maskless Lithography,” Journal of the Optical Society of Korea, vol. 16 (3), pp. 221-227, 2012.
    [21] Huang S., Li, M., Wang, L., Su, Y., Liang, Y., “Precise fabrication of large-area microstructures by digital oblique scanning lithography strategy and stage self-calibration technique,” Applied Physics Express, vol. 12 (9), 2019.
    [22] Ryoo, H., Kang, D. W., Song, Y. T., Hahn, J. W., “Experimental analysis of pattern,” J. Micro/Nanolith. MEMS MOEMS, vol. 11 (2), 023004, 2012.
    [23] Chan, K. F., Feng, Z., Yang, R., Ishikawa, A., Mei, W., “High-resolution maskless lithography,” Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 2 (4), pp. 331-339, 2003.
    [24] Chiu, C. C., Lee, Y. C., “Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser dragging method”, Optics Express, vol. 20 (6), pp. 5922-5935, 2012.
    [25] Hasan, M. N., Haque, M. U., Lee, Y. C., “Deastigmatism, circularization, and focusing of a laser diode beam using a single biconvex microlens,” Optical Engineering, vol. 55 (9), 095107, 2016.
    [26] Lee, Y. C., Chen, C.M., Wu, C.Y., “A new excimer laser micromachining method for axially symmetric 3D microstructures with continuous surface profiles,” Sensors and Actuators A, vol. 117, pp. 349-355, 2005.
    [27] Lee, Y. C., Wu, C. Y., “Fabrication and characterization of 3D aspheric microlenses with arbitrary surface profiles based on a novel excimer laser contour scanning method”, Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5-9, 2005.
    [28] Lee, Y. C., Chen, C. M., Wu, C. Y., “Spherical and Aspheric Microlenses Fabricated by Excimer Laser LIGA-like Process” , J. Manuf. Sci. Eng., vol. 129 (1), pp. 126-134, 2007.
    [29] Lee, Y. C., Wu, C. Y., “Excimer laser micromachining of aspheric microlenses with precise surface profile control and optimal focusing capability”, Optics and Lasers in Engineering, vol. 45, pp. 116-125, 2007.
    [30] Chiu, C. C., Lee, Y. C., “Fabricating of aspheric micro-lens array by excimer laser micromachining”, Optics and Lasersin Engineering, vol. 49, pp. 1232-1237, 2011.
    [31] Chiu, C. C., Lee, Y. C., Fabrication of hexagonally arrayed micro-structures with axially symmetrical surface profile by tri-axial excimer laser scanning”, International Journal of Machine Tools & Manufacture, vol. 70, pp. 15-21, 2013.
    [32] Md. Nazmul Hasan and Yung-Chun Lee, “Beam pen lithography based on focused laser diode beam with single microlens fabricated by excimer laser”, Optics Express, vol. 23 (4), pp. 4494-4505, 2015.
    [33] Hung, Y. H., Chien, H. L., Lee, Y. C., “Excimer Laser Three-Dimensional Micromachining Based on Image Projection and the Optical Diffraction Effect”, Appl. Sci., vol. 8, 1690, 2018.
    [34] Zhong, K., Gao, Y., Li, F., Luo, N., Zhang, W. “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol, vol. 56, pp. 367-371, 2014.
    [35] Aristizabal, S. L., Cirino, G. A. , Montagnoli, A. N., Sobrinho, A. A., “Microlens array fabricated by a low-cost grayscale lithography maskless system”, Optical Engineering, vol. 52 (12) 125101, 2013.
    [36] Ma, X., Kato, Y., Kempen, F., Hirai, Y., Tsuchiya, T., Keulen, F., Tabat, O., “Multiple Patterning with Process Optimization Method for Maskless DMD-Based Grayscale Lithography”, Procedia Engineering, vol. 120, pp. 1091-1094, 2015.
    [37] Zhong, K., Zhang, H., Gao, Y., “Fabrication of high fill-factor aspheric microlens array by digital maskless lithography”, Optik – International Journal for Light and Electron Optics, vol. 142, pp. 243-248, 2017.
    [38] Ma, X., Kato, Y., Kempen, F. V., Hirai, Y., Tsuchiya, T., Keulen, F. V., Tabata, O. ,“Experimental Study of Numerical Optimization for 3-D Microstructuring Using DMD-Based Grayscale Lithography”, Journal of Microelectromechanical Systems, vol. 24 (6), pp. 1856-1867, 2015.
    [39] Yang, B., Zhou, J., Chen, Q., Lei, L., Wen, K., “Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation”, Optics express, vol. 26 (22), pp. 28929-28937, 2018.
    [40] Song, S. H., Kim, K., Choi, S. E., Han, S., Lee, H. S., Kwon, S., Park, W., “Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication”, OPTICS LETTERS, vol. 39 (17), pp. 5162-5165, 2014.
    [41] Na, J. H., Bende, N. P., Bae, J., Santangelo, C. D., Hayward, R. C., “Grayscale gel lithography for programmed buckling of non-Euclidean hydrogel plates”, Soft Matter, vol. 12, pp. 4985-4990, 2016.
    [42] Ma, X., Kato, Y., Hirai, Y., Kempen, F. v., Keulen, F. v., Tsuchiya, T., Tabata, O., “Optimization methods for 3D lithography process utilizing DMD-based maskless grayscale photolithography system,” Proc. SPIE, vol. 9426, Optical Microlithography XXVIII, 94260F, 2015.
    [43] Ding, X. Y., Ren, Y. X., Lu, R. D., “Maskless microscopic lithography through shaping ultra violet laser with digital micro-mirrors device,” Optics and Photonics Journal, vol. 3, pp. 227-231, 2013.
    [44] Sun, C., Fang, N., Wu, D. M., Zhang, X., “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sensors and Actuators A, vol. 121, pp. 113-120, 2005.
    [45] Kang, H. W., Park, J. H., Cho, D. W., “A pixel based solidification model for projection based stereolithography technology,” Sensors and Actuators A, vol. 178, pp. 223-229, 2012.
    [46] Takahashi, K., Setoyama, J., “A UV‐exposure system using DMD,” Electronics and Communications in Japan, Part II: Electronics, vol. 83 (7), pp. 56-58, 2000.
    [47] Gauvin, R., Chen, Y.C., Lee, J. W., Soman, P., Zorlutuna, P., Nichol, J. W., Bae, H., Chen, S., Khademhosseini, A., “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials, vol. 33, pp. 3824-3834, 2012.
    [48] Choi, J. W., Ha, Y. M., Lee, S. H., Choi, K. H., “Design of microstereolithography system based on dynamic image projection for fabrication of three-dimensional microstructures,” Journal of Mechanical Science and Technology (KSME Int. J.), vol. 20 (1), pp. 2094-2104, 2006.
    [49] Zhong, K., Gao, Y., Li, F., “Maskless lithography Based on DMD,” Key Engineering Materials, vol. 552, pp. 207-213, 2013.
    [50] Hur, J. G. “Maskless fabrication of three-dimensional microstructures with high isotropic resolution: practical and theoretical considerations,” APPLIED OPTICS, vol. 50 (16), pp. 2383-2390, 2011.
    [51] Kang, D. W., Kang, M., Hahn, J. W., “Accurate position measurement of a high-density beam spot array in digital maskless lithography,” APPLIED OPTICS, vol. 52 (23), pp. 5862-5868, 2013.
    [52] Li, Q. K., Xiao, Y., Liu, H., Zhang, H. L., Xu, J., Li, J. H., “Analysis and correction of the distortion error in a DMD based scanning lithography system,” Optics Communications, vol. 434, pp.1-6, 2019.
    [53] Yang, R., Chan, K. F., Feng, Z., Akihito, I., Mei, W., “Design and fabrication of microlens and spatial filter array by self-alignment for maskless lithography systems,” J. Microlith., Microfab., Microsyst., vol. 2 (3), 2003.
    [54] Ryoo, H., Kang, D. W., Hahn, J. W., “Analysis of the line pattern width and exposure efficiency in maskless lithography using a digital micromirror device,” Microelectronic Engineering, vol. 88, pp. 3145-3149, 2011.
    [55] Peng, C., Zhang, Z., Zou, J., Chi, W., “A high-speed exposure method for digital micromirror device based scanning maskless lithography system,” Optik - International Journal for Light and Electron Optics, vol. 185, pp. 1036-1044, 2019.
    [56] Hasan, Md. N., Dinh, D. H., Chien, H. L., Lee, Y. C. “Maskless beam pen lithography based on integrated microlens array and spatial-filter array,” Optical Engineering, vol. 56 (11) 115104, 2017.
    [57] Dinh, D. H., Chien, H. L., Lee, Y. C., “Maskless lithography based on digital micromirror device (DMD) and double sided microlens and spatial filter array,” Optics and Laser Technology, vol. 113, pp. 407-415, 2019.
    [58] Hartmann, P., Wenzl, F. P., Sommer, C., Pachler, P., Hoschopf H., Schweighart, M., Hartmann, M., Kuna, L., Jakopic, G., Leising, G., Tasch, S., “White LEDs and modules in chip-onboard technology for general lighting,” Proc. SPIE 6337, 63370I, 2006.
    [59] Zheng, H., Li, L., Lei, X., Yu, X., Liu, S., “Optical Performance Enhancement for Chip-on-Board Packaging LEDs by Adding TiO2/Silicone Encapsulation Layer,” IEEE Electron Device Letters, vol. 35 (10), pp. 1046-1048, 2014.
    [60] Texas Instruments, “DLP7000 DLP® 0.7 XGA 2x LVDS type A DMD datasheet (Rev. F)”, https://www.ti.com/lit/ds/symlink/dlp7000.pdf?ts=1597070584925, accessed August 2012 (revised June 2019), 2019.

    無法下載圖示 校內:2025-11-01公開
    校外:2025-11-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE