| 研究生: |
顏子晏 Yan, Zi-Yan |
|---|---|
| 論文名稱: |
變轉速機構之最佳馬達選用研究 On the Study of Optimal Selection of Motor for Variable-Input-Speed Mechanisms |
| 指導教授: |
顏鴻森
Yan, Hong-Sen |
| 共同指導教授: |
林昌進
Lin, Psang-Dain |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 變轉速輸入 、曲柄滑塊機構 、馬達選用 、運動設計 、動力設計 、減速比判定 |
| 外文關鍵詞: | variable input speed, slider-crank mechanism, selection of motor, kinematic design, dynamic design, feasible gear ratio |
| 相關次數: | 點閱:156 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以馬達為動力源之機構的研究,在伺服馬達速度控制不靈敏的條件下,使用等速旋轉的馬達為主,當輸出桿件的運動特性要求不同時,往往必須重新設計機構。由於伺服控制理論的成熟及馬達的發展,可透過設計變轉速輸入的方法,達到同一個機構不同輸出的特性,解決重新設計機構及尺寸的複雜性,變轉速相關的研究已證明其可行性,但並沒有明確探討各個馬達的優劣與選擇方式。因此,本研究以具滑塊為輸出件的連桿機構為設計實例,藉由設計出的轉速曲線,建立其選用馬達的方式與流程,並針對選用的馬達得出可行的最佳減速比。
首先分別推導四桿曲柄滑塊機構、瓦特六連桿機構,以及史蒂芬森六連桿機構的運動方程式與扭矩方程式。接著,提出針對機構輸出的特性,定義其目標函式及限制條件,得到各個機構的轉速設計實例。其後,建立馬達選用的方式與可行減速比範圍的判定法,將轉速設計的實例應用在馬達選用的方法,並以兩個例子判定多顆馬達於選用時的優劣比較,驗證了馬達的選用方式。
In the research of mechanisms with a motor as the power source, under the condition that the speed control of servo motors is not sensitive, a motor that rotates at a constant speed is mainly used. When the motion characteristics of the output member are different, the mechanism must be redesigned. Due to the maturity of servo control theory and the development of motors, it is possible to achieve the characteristics of different outputs of the same mechanism by designing variable-input-speed methods, solving the complexity of redesigning the mechanism and size. Research on variable speed has proved its feasibility, but did not explicitly discuss the pros and cons of motors and the selection method. Therefore, this work takes the linkage mechanism with an output slider as the design example, and establishes the method and process of selecting motor based on the designed speed curve, and obtains the best feasible reduction ratio for the selected motor.
Firstly, the work derives the motion equations and torque equations of the four-bar slider-crank mechanism, the Watt six-bar linkage mechanism, and the Stephenson six-bar linkage mechanism. Then, according to the characteristics of the output of the mechanism, the objective function and constraints to obtain the speed curve of each example are defined. Afterward, the method of selection of motor and determining the feasible range of gear ratio is established. Finally, the method is applied in two examples and the selection method is verified.
[1] K. A. Pasch and W. P. Seering, 1984, “On the drive systems for high performance machines,” J. Mech., Vol. 106, pp. 102-108.
[2] P. Chedmail and M. Gautier, 1990, “Optimum choice of robot actuators,” J. of Engineering for Industry, Vol. 112, pp. 361-367.
[3] S. Cetinkunt, 1991, “Optimal design issues in high-speed high-precision motion servo systems,” Mechatronics, Vol. 1, No. 2, pp. 187-201.
[4] H. J. Van de Straete, P. Degezelle, J. De Schutter, and R. Belmans, 1998, “Servo motor selection criterion for mechatronics applications,” IEEE/ASME Trans. on Mechatronics, Vol. 3, No. 1, pp. 43-50.
[5] H. J. Van de Straete, J. De Schutter, and R. Belmans, 1999,“An efficient procedure for checking performance limits in servo drive selection and optimization,” IEEE/ASME Trans. on Mechatronics, Vol. 4, No. 4, pp. 378-386.
[6] F. Roos, H. Johansson, and J. Wikander, 2006,“Optimal selection of motor and gearhead in mechatronic application,” Mechatronics 16, pp. 63–72.
[7] C. Choi, S. Jung, S. Kim, et al, 2007,“A motor selection technique for designing a manipulator. 2007 IEEE International Conference on Control, Automation and Systems, pp. 2487–2492.
[8] G. Cusimano, 2007,“Optimization of the choice of the system electric drive device — transmission for mechatronic applications,” Mech. Mach. Theory 42, pp. 48–65.
[9] G. Cusimano, 2011,“Choice of the system electrical drive device — transmission for mechatronic applications: the torque peak,” Mech. Mach. Theory 46, pp. 1207–1235.
[10] G. Cusimano, 2015, “Choice of motor and transmission in mechatronic applications: non-rectangular dynamic range of the drive system,” Mech. Mach. Theory 85, pp. 35–52.
[11] H. Giberti, S. Cinquemani, and G. Legnani, 2010, “Effects of transmission mechanical characteristics on the choice of a motor-reducer,” Mechatronics, 20(5), pp. 604–610.
[12] G. Han, F. Xie, and X.J. Liu, 2015, “Optimal selection of servo motor and reduction ratio for high-speed parallel robots,” Intelligent Robotics and Applications, pp. 109-120, Tsinghua University, Beijing.
[13] H. A. Rothbart, 1956, Cams: Design, Dynamics and Accuracy, John Wiley & Sons, New York.
[14] D. Tesar and G. K. Matthew, 1976, The Dynamics Synthesis, Analysis, and Design of Modeled Cam Systems, Lexington Books, Maryland.
[15] 謝文祥,1991年6月,控制凸輪轉速改善從動件運動狀態,碩士論文,國立成功大學機械工程學系,臺南市。
[16] 方銘國,1993年6月,多項式可變轉速凸輪運動曲線設計之研究,碩士論文,國立成功大學機械工程學系,臺南市。
[17] H. S. Yan, M. H. Hsu, M. K. Fong, and W. H. Hsieh, 1994, “A kinematic approach for eliminating the discontinuity of motion characteristics of cam-follower systems,” Journal of Applied Mechanisms & Robotics, 1(2), pp. 1-6.
[18] H. S. Yan, M. C. Tsai and M. H. Hsu, 1996.05, “An experimental study of the effects of cam speeds on cam-follower systems,” Mech. Mach. Theory, Vol.31, No.4, pp. 397-412.
[19] H. S. Yan and M. K. Fong, 1994, “An approach for reducing the peak acceleration of cam-follower systems using a B-spline representation,” Journal of the Chinese Society of Mechanical Engineers, Taipei, 15(2), pp. 48-55.
[20] 陳亮文,1993年,應用伺服控制技術改善凸輪機構運動特性之研究,碩士論文,國立成功大學機械工程學系,臺南市。
[21] 余兆明,1994年,變轉速凸輪機構之伺服控制器設計,碩士論文,國立成功大學機械工程學系,臺南市。
[22] 白友中,1995年,凸輪機構之週期性轉速追蹤控制,碩士論文,國立成功大學機械工程學系,臺南市。
[23] 徐孟輝,1996年,變轉速平板凸輪系統之研究,博士論文,國立成功大學機械工程學系,臺南市。
[24] M. H. Hsu and W. R. Chen, 1999, “On the design of speed function for improving torque characteristics of cam-follower systems,” Proceedings of the Tenth World Congress on the Theory of Machines and Mechanisms, Oulu, 1, pp. 272-277.
[25] Y. A. Yao, C. Zhang, and H. S. Yan, 2000.04, “Motion control of cam mechanisms,” Mech. Mach. Theory, Vol.35, No.4, pp. 593-607.
[26] Y. A. Yao, H. S. Yan, C. Zhang, and H. J. Zou, 2000.10, “Integrated design of cam mechanisms and servo-control systems,” Science in China (Series E), Vol.43, No.5, pp. 511-518.
[27] H. S. Yan, Y. A. Yao, and H. J. Zou, 2001, “Polydyne servo-cam design,” Journal of the Chinese Society of Mechanical Engineers, Taipei, Vol.22, No.2, pp. 90-104.
[28] Y. A. Yao, H. S. Yan and, C. Zhang, 2003.09, “A variable-speed method for reducing residual vibrations in elastic cam-follower systems,” ASME Trans., Journal of Dynamic Systems, Measurement, and Control, Vol.125, No.3, pp. 480-482.
[29] Y. A. Yao and H. S. Yan, 2003, “A novel concept for minimizing speed fluctuations in motor driven mechanisms,” Journal of the Chinese Society of Mechanical Engineers, Taipei, Vol.24, No.4, pp. 565-570.
[30] Y. A. Yao, J. Z. Cha and, H. S. Yan, 2004.10, “Co-design of mechanism and control,” Chinese Journal of Mechanical Engineering, Beijing, Vol.40, No.10, pp.1-5.
[31] H. S. Yan and W. J. Tsai, 2008.02, “A variable-speech approach for preventing cam-follower separation,” Journal of Mechanical Design, Systems, and Manufacturing, JSME International Journal, Vol.2, No.1, pp. 12-23.
[32] H. S. Yan and W. J. Tsai, 2008, “Motion adaptation of cam-follower systems by variable input speeds,” Proceedings of the Institute of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science., Vol.222(C3), pp. 459-472.
[33] H. S. Yan and C.C. Yeh, 2010, “Integrated kinematic and dynamic design for variable-speed plate cam mechanisms,” Proceedings of the Institute of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, Vol.225(C3), pp. 194-203.
[34] Yossifon, S., Messerly, D., Kropp, E., Shivpuri, R., and Altan, T., 1911, “A servo motor driven multi-action press for sheet metal forming,” Int. J Mach. Tools Manufact., Vol. 31, No. 3, pp. 345-359.
[35] Yossifon, S. and Shivpuri, R., 1993a, “Analysis and comparison of selected rotary linkage drives for mechanical press,” Int. J Mach. Tools Manufact., Vol. 33, No. 2, pp. 175-192.
[36] Yossifon, S. and Shivpuri, R., 1993b, “Optimization of a double knuckle linkage drive with constant mechanical advantage for mechanical presses,” Int. J Mach. Tools Manufact., Vol. 33, No. 2, pp. 193-208.
[37] Yossifon, S. and Shivpuri, R., 1993c, “Design considerations for the electric servomotor driven 30 ton double knuckle press for precision forming,” Int. J Mach. Tools Manufact., Vol. 33, No. 2, pp. 209-222.
[38] 陳維仁,1999年7月,具曲柄輸入滑件輸出變轉速連桿機構之研究,博士論文,國立成功大學機械工程學系,臺南市。
[39] Ali. Kirecci and L. C. Dulger, 2000, “A study on a hybrid actuator,” Mechanism and Machine Theory, Vol. 35, No. 4, pp. 1141-1149.
[40] 顏國智,2001年6月,具負載變轉速伺服滑件曲柄機構之研究,碩士論文,國立成功大學機械工程學系,臺南市。
[41] Yan, H. S. and Chen, W. R., 2002, System for servomotor driven press to permit performance of multi purpose tasks, United State Patent No. 6366046.
[42] Y.A. Yao, H.S. Yan, and H.J. Zou, 2002, “Output motion control of variable-input-speed linkage mechanisms,” Trans. of the Canadian Society for Mechanical Engineering, Vol. 26, No. 1, pp. 1-14.
[43] Y.A. Yao, H.S. Yan, and H.J. Zou, 2005, “Dynamic design of variable speed planar linkages,” Chinese Journal of Mechanical Engineering, Beijing, Vol. 18, No. 1, pp. 51-54.
[44] 陳誌峰、邱顯堂,2005年,用傅立葉級數決定輸入轉速之四連桿機構最佳平衡設計,第八屆全國機構與機器設計學術研討會,中華民國機構與機器原理學會,臺北市,第498-505頁。
[45] H.S. Yan and G.J. Yan, 2009, “Integrated control and mechanism design for variable input-speed servo four-bar linkages,” Journal of Mechatronics, Vol. 19, pp. 274-285.
[46] J. Y. Liu, M. H. Hsu and F. C. Chen, 2001, “On the design of rotating speed functions to improve the acceleration peak value of ball-screw transmission mechanism, ” Mechanism and Machine Theory, Vol. 39, No. 4, pp. 1035-1049.
[47] 陳仁智,顏鴻森,2004.11.26-27,“具負載變轉速滾珠螺桿機構於伺服沖床之研究”,第二十一屆學術研討會,中國機械工程學會,高雄市,2025-2030頁。
[48] 顏鴻森,林志明,劉俊佑,2005.08,“一種具變轉速滾珠螺桿機構之伺服沖床設計”,機械設計與研究,上海市,21卷,4期,6-8&12頁。
[49] H. S. Yan and M. S. Kuo, 2011, “Using the Fourier series function to improve the kinematic characteristic of ball-screw servo press mechanism,” Machine Design and Research, Shanghai, 2011 Special issue, pp. 40-42.
[50] 徐翊清,2013年6月,一種變轉速複合螺桿機構之運動與動力特性設計,碩士論文,國立成功大學機械工程學系,臺南市。
[51] J. H. Yang, M. H. Hsu, H.S. Yan, 2016.02, “Kinematic and dynamic characteristics design of a variable-speed machine with slider-crank and screw mechanisms,” ASME Trans., Journal of Mechanisms and Robotics, Technical brief, Vol. 8, pp. 014502-1~6.
[52] 葉東龍,2017年5月,應用變轉速滾珠螺桿複合機構於劍桅式無梭織布機之研究,碩士論文,國立成功大學機械工程學系,臺南市。
[53] 陳昱叡,2020年5月,滾珠螺桿複合機構之變轉速輸入函數研究,碩士論文,國立成功大學機械工程學系,臺南市。
[54] 卓志忠,2001年6月,日內瓦機構之最佳轉速規劃,碩士論文,國立台灣大學機械工程學系,臺北市。
[55] 陸蘇財,2001年6月,以變轉速驅動之有間隙日內瓦機構之動力解析與模擬,碩士論文,國立台灣大學機械工程學系,臺北市。
[56] 謝佩瑾,2002年5月,變轉速伺服日內瓦機構之研究,碩士論文,國立成功大學機械工程學系,臺南市。
[57] 沈展榮,2004年5月,變轉速伺服具間隙日內瓦機構之研究,碩士論文,國立成功大學機械工程學系,臺南市。
[58] A. S. Hall, Jr., 1981, Notes on Mechanism Analysis, BALT Publishers, Lafayette, Indiana.
[59] K. Erwin, 1999, Advanced Engineering Mathematics, 8th edition, John Wiley & Sons.
[60] C. Wick, J.T. Benedict, and R.F. Veilleux, 1983, Tool and Manufacturing Engineers Handbook, Vol.2, Society of Manufacturing Engineers, 4th edition, Michigan.
[61] T. Lyman, H. Boyer, and E.A. Durand, 1969, Metals Handbook, Vol. 4 Forming, 8th Edition, American Society for Metals, Ohio, p. 56.