| 研究生: |
陳清璿 Chen, Cing-Syuan |
|---|---|
| 論文名稱: |
乙醯轉移酶MOZ調控同源重組修復機制 Histone acetyltransferase MOZ regulates Homologous Recombination repair |
| 指導教授: |
廖泓鈞
Liaw, Hung-Jiun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | MOZ 、MYST 、stalled fork 、組蛋白乙醯轉移酶 、DNA修復路徑 、順鉑抗藥性 、姊妹染色分體互換 、轉錄因子 |
| 外文關鍵詞: | MOZ, MYST family, stalled forks, Histone acetyltransferases, homologous recombination repair pathway, sister chromatid exchange, cisplatin drug resistant |
| 相關次數: | 點閱:172 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乙醯轉移酶MOZ隸屬於組蛋白乙醯轉移酶(Histone acetyltransferase, HATs)中的MYST家族,可藉由將組蛋白乙醯化來改變電荷組成而使DNA構型改變,達到調控下游基因轉錄轉譯的能力;近年來少數研究指出,MYST家族可能是調控DNA損傷修復關鍵。
順鉑(Cisplatin)是目前癌症化療的重要用藥,其可以透過對癌細胞內的DNA產生嚴重損傷而達到殺死癌細胞的效用,現今廣泛運用於肺癌、卵巢癌、乳癌等,然癌細胞產生抗藥現象至今仍是癌症醫療的一大關卡。研究指出,癌細胞抗藥性產生與自身的DNA損傷修復能力增強可能有極大關連。順鉑所引發的DNA損傷主要是由范可尼貧血修復路徑(Fanconi anemia, FA)以及後複製修復路徑(Post-replication repair, PRR)配合同源重組(Homologous recombination, HR)的方式來做修復。本篇研究發現將具有順鉑抗藥性的鼻咽癌細胞株(Hone6, H6)之MOZ基因表現量抑制後,除了FA以及PRR路徑上相關蛋白的mRNA以及蛋白表現量降低以及姊妹染色分體互換率(Sister chromatid exchange, SCE)有明顯下降的現象外,細胞也會有較高機率產生stalled fork之現象,並對於順鉑藥物更具有敏感性;最後在染色質免疫沉澱(Chromatin immunoprecipitation, ChIP)實驗中發現,MOZ會與FA以及PRR之關鍵蛋白BRCA1以及FANCD2啟動子有交互作用,也就是轉錄起始點上游的位置。總結以上實驗結果推測,MOZ本身藉由結合到DNA修復路徑相關基因的啟動子上,產生chromatin remodeling而利於轉錄,進而提升修復路徑相關基因表現,達到增強癌細胞抗順鉑藥物的能力,為治療具順鉑抗藥性的癌症研究上提供一個方向。
MOZ belongs to the MYST family of histone acetyltransferases and it can acetylate histone H3 and non-histone proteins such as p53. Therefore, it plays an important role in regulating chromatin structure, transcription, DNA replication, and DNA repair. Several lines of evidence have shown that homologous recombination (HR) can contribute to the cisplatin-resistant phenotype of cancer. In this study, we hypothesize that MOZ can enhance the expression of genes in the homologous recombination repair pathway, therefore conferring cancer cells the cisplatin-resistant phenotype. Here, we found that depletion of MOZ can sensitize the cisplatin-resistant nasopharyngeal carcinoma cells, HONE6 cells, to cisplatin. In addition, the MOZ-deficient HONE6 cells show reduced expression level of several genes involved in the HR, Fanconi anemia (FA), and post-replication repair (PRR) pathways, decreased frequency of the sister chromatid exchange (SCE), and increased frequency of stalled forks in response to cisplatin. Furthermore, MOZ can bind to the promoter of BRCA1 and FANCD2 by the chromatin immunoprecipitation experiments. Our results indicate that MOZ could activate the HR repair pathway, resulting in cisplatin resistant phenotype. Targeting MOZ could be a potential therapeutic strategy to treat cisplatin resistant cancer.
Bekker-Jensen, S., C. Lukas, R. Kitagawa, F. Melander, M.B. Kastan, J. Bartek, and J.Lukas. 2006. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol. 173:195-206.
Bielas, J.H., and L. A. Loeb. 2005. Mutator phenotype in cancer: timing and perspectives. Environ Mol Mutagen. 45:206-213.
Borrow, J., V.P. Stanton Jr, J. Michael Andresen, R. Becher, F. Behm, R. S. K. Chaganti, C. Civin, C.Disteche, I. Dubé, A.M. Frischauf, D. Horsman, F. Mitelman, S. Volinia, A.E. Watmore, and D.E. Housman. 1996. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nature genetics. 14.
Branzei, D., and M. Foiani. 2010. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 11:208-219.
Chang, D.J., and K.A. Cimprich. 2009. DNA damage tolerance: when it's OK to make mistakes. Nat Chem Biol. 5:82-90.
Chen, L., C.J. Nievera, A.Y. Lee, and X.Wu. 2008. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem. 283:7713-7720.
Ciccia, A., N. McDonald, and S.C. West. 2008. Structural and functional relationships of the XPF/MUS81 family of proteins. Annu Rev Biochem. 77:259-287.
Cole, A.R., L.P. Lewis, and H. Walden. 2010. The structure of the catalytic subunit FANCL of the Fanconi anemia core complex. Nat Struct Mol Biol. 17:294-298.
Deng C.X., a.S.G.B. 2000. Roles of BRCA1 and its interacting proteins. BioAssays. 22:728-737.
Duesberg, P., R. Stindl, R. Hehlmann. 2000. Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy. Proc Natl Acad Sci U S A. 97:14295-14300.
Eastman, A. 1987. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacology & Therapeutics. 34:155-166.
Gao, C., K. Furge, J. Koeman, K. Dykema, Y. Su, M. L. Cutler, A. Werts, P. Haak, and G. F. Vande Woude. 2007. Chromosome instability, chromosome transcriptome, and clonal evolution of tumor cell populations. Proc Natl Acad Sci U S A. 104:8995-9000.
Ghosal, G., and J. Chen. 2013. DNA damage tolerance: a double-edged sword guarding the genome. Transl Cancer Res. 2:107-129.
Gudmundsdottir, K., and A. Ashworth. 2006. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene. 25:5864-5874.
Hoege, C., B. Pfander, G.L. Moldovan, G. Pyrowolakis, and S. Jentsch. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin
and SUMO. Nature. 419:135-141.
Huertas, P., and S.P. Jackson. 2009. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem. 284:9558-9565.
Jackson, S.P., and J. Bartek. 2009. The DNA-damage response in human biology and disease. Nature. 461:1071-1078.
K Jamil, M.A. 2012. Insight into the DNA repair mechanism operating during cell cycle checkpoints in eukaryotic cells<2.pdf>. Biology and Medicine. 4:147-166.
Kauffman, G.B., R. Pentimalli, S. Doldi, and M.D. Hall. 2010. Michele Peyrone (1813-1883), Discoverer of Cisplatin. Platinum Metals Review. 54:250-256.
Largeot, A., J. Paggetti, J. Broseus, R. Aucagne, B. Lagrange, R. Z. Martin,, R.Q. J. Berthelet, G. Lucchi, P. Ducoroy,, and a.L.D. J.N. Bastie. 2013. Symplekin, a polyadenylation factor, prevents MOZ and MLL activity on HOXA9 in hematopoietic cells. Biochim Biophys Acta. 1833:3054-3063.
Lee, K.Y., and K. Myung. 2008. PCNA modifications for regulation of post-replication repair pathways. Molecules and Cells. 26:5-11.
Liu, Y., and S.C. West. 2004. Happy Hollidays: 40th anniversary of the Holliday junction. Nat Rev Mol Cell Biol:933-944.
Loeb, L.A. 2001. A Mutator Phenotype in Cancer. CANCER RESEARCH. 61:3230-3239.
Loeb, L.A., K.R. Loeb, and J.P. Anderson. 2003. Multiple mutations and cancer. Proc Natl Acad Sci U S A. 100:776-781.
Minca, E.C., and D. Kowalski. 2010. Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Mol Cell. 38:649-661.
Petermann, E., and T. Helleday. 2010. Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol. 11:683-687.
Pfeiffer, P., W. Goedecke, and G. Obe. 2000. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. 15:289-302.
Prestayko, A.W., J.C. D'Aoust, B.F. IsselI, and S.T. Crooke. 1979. Cisplatin (cis-diamm;nedichloroplatinum II). Cancer Treatment Reviews. 6:17-39.
Qiu, Y., L. Liu, C. Zhao, C. Han, F. Li, J. Zhang, Y. Wang, G. Li, Y. Mei, M. Wu, J. Wu, and Y.Shi. 2012. Combinatorial readout of unmodified H3R2 and acetylated H3K14 by the tandem PHD finger of MOZ reveals a regulatory mechanism for HOXA9 transcription. Genes Dev. 26:1376-1391.
Rogakou, E.P., D.R. Pilch, A.H. Orr, V.S. Ivanova, and W.M. Bonner. 1998. DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139. The Journal of biological chemistry. 273:5858-5868.
Rokudai, S., O. Laptenko, S. M. Arnal, Y. Taya, I. Kitabayashi, and C. Prives. 2013. MOZ increases p53 acetylation and premature senescence through its complex formation with PML. Proc Natl Acad Sci U S A. 110:3895-3900.
Su, W.P., S.H. Hsu, C.K. Wu, S. B. Chang, Y. J. Lin, W.B. Yang, J. J. Hung, W.T. Chiu, S.F. Tzeng, Y.L. Tseng, J.Y. Chang, W.C. Su, Su, W.P., S.H. Hsu, C.K. Wu, S.B. Chang, Y.J. Lin, W.B. Yang, J.J. Hung, W.T. Chiu, S.F. Tzeng, Y.L. Tseng, J.Y. Chang, W.C. Su, and H. Liaw 2014. Chronic treatment with cisplatin induces replication-dependent sister chromatid recombination to confer cisplatin-resistant phenotype in nasopharyngeal carcinoma. Oncotarget.
Ullah, M., N. Pelletier, L. Xiao, S. P. Zhao, K. Wang, C. Degerny,, C.C. S. Tahmasebi, Y.Doyon, S. L. Goh, N. Champagne,, and a.X.J.Y. J.Cote. 2008. Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes. Mol Cell Biol. 28:6828-6843.
Wang, W. 2007. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet. 8:735-748.
Willenbucher, R., F., D.E. Aust, C.G. Chang, S. J. Zelman, L.D. Ferrell, D. H. Moore II, and F. M. Waldman. 1999. Genomic Instability Is an Early Event during the
Progression Pathway of Ulcerative-Colitis-Related Neoplasia. American Journal of Pathology. 154.
Yang, X.-J., and M. Ullah. 2007. MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells. Oncogene. 26:5408-5419.
Yu, X., and J. Chen. 2004. DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol Cell Biol. 24:9478-9486.
Zhou, B.B., and S.J. Elledge. 2000. The DNA damage response: putting checkpoints in perspective. Nature. 408.