簡易檢索 / 詳目顯示

研究生: 王勝民
Wang, Sheng-Min
論文名稱: 可電與可全光控之二維染料摻雜液晶光子晶體光柵之研究
Electrically and all-optically controllable two-dimensional photonic crystal gratings based on dye-doped liquid crystal films
指導教授: 李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 75
中文關鍵詞: 液晶光柵染料電控全光控
外文關鍵詞: liquid crystal, gratings, dye, electrically controllable, all-optically controllable
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首次利用兩片不同的染料摻雜液晶薄膜製作出可電控及可全光控之二維光子晶體扭轉向列型光柵,並且深入探討其光電特性。此二維光子晶體扭轉向列型光柵是藉由在染料摻雜液晶樣品前後兩側同時寫入兩組相互正交的干涉光場而形成。受到吸附在樣品基板表面的Methy1 Red(MR)染料作用力影響,樣品內的液晶會重新排向,經此作用所形成之二維光子晶體光柵具有永久性結構。我們分別使用He-Ne雷射與偏光顯微鏡為偵測工具,觀察樣品的繞射行為及與其對應之光柵圖樣。實驗結果顯示,當一線性偏振光入射此二維光子光柵後,具不同偏振狀態之多階繞射光將於屏幕上呈現二維分布。本論文亦使用一套以Jones matrix為基礎之理論模型對此光子晶體結構及其繞射圖樣進行模擬,模擬與實驗結果相當吻合。此二維光子晶體光柵可藉由外加交流電場加以控制其結構與繞射圖樣。
    若在已摻雜MR之液晶樣品內,加入非吸附型染料4-MAB,則此二維光子晶體光柵及其繞射圖樣亦可達到全光調控性能。此全光調控性機制是歸因於樣品內部4-MAB染料分子依序於照射UV與綠光之後,分別進行trans-cis與cis-trans back之同素異構化反應,進而帶動液晶產生nematic→isotropc與isotropc→nematic相變。

    This thesis develops and investigates for the first time two-dimensional photonic crystal (2D PC) twisted-nematic (TN) gratings with electrical and all-optical controllabilities based on two distinct dye-doped liquid crystal (DDLC) films. The 2D PC TN gratings are written by the simultaneous and reverse exposure of two orthogonal interfering fields on the DDLC cells. The mechanism for the permanent formation of the 2D PC gratings is attributable to the molecular reorientation of the LCs as a result of their interaction with the Methy1 Red (MR) dyes adsorbed on the surface of the cell substrates. The diffraction features and the grating pattern are studied with the probe of He-Ne laser beam and under a polarizing optical microscope with cross and parallel polarizers, respectively experimental results indicate that the 2D PC gratings diffract the linearly polarized incident light into 2D distributed beams with various polarization states. A model based on the Jones matrix approach is developed , and it closely fits experimental results of the PC structures and the diffraction patterns. The structure and the diffraction pattern of the 2D PC grating can be controlled to disappear or emerge by the presence of an AC external field.
    With added unadsorbed dyes, 4-MAB, in the MR-doped LC cell, the structure and the diffraction pattern of the formed 2D PC grating can be also all-optically controlled. The all-optical controllability of the grating is attributed to the nematic (N) → isotropic (I) and I → N phase transitions of the LCs due to the UV-induced trans-cis and the green-beam-induced cis-trans back isomerizations of the 4-MAB dyes, respectively, in the bulk of the cell.

    緒論 1 第一章 液晶簡介 3 §1-1 液晶起源 3 §1-2 何謂液晶 3 §1-3 液晶分類 4 §1-4 液晶物理特性 8 §1-4-1 液晶雙折射性 8 §1-4-2 液晶之折射率與溫度關係 12 §1-4-3 電場對絕緣向列相液晶的影響 12 §1-4-4 液晶的連續彈性體理論 14 §1-4-5 扭轉向列相液晶旋光性 15 第二章 重要機制與理論 19 §2-1 光場激發染料分子引致液晶旋轉機制 19 §2-1-1 Jánossy Effect 19 §2-1-2 光激發偶氮染料同素異構化反應 20 §2-2 以瓊斯矩陣方法模擬二維TN-LC光柵結構與其繞射特性之計算 26 §2-2-1 瓊斯矩陣方法 26 §2-2-2 模擬二維TN-LC光子晶體光柵繞射特性之計算 28 §2-3平面波之干涉 32 §2-3-1 兩束相干平面光波之干涉場分佈 32 §2-3-2 干涉場之干涉條紋間距 34 §2-4 光子晶體結構 34 第三章 實驗樣品製備與量測 36 §3-1 樣品的製備 36 §3-1-1 材料介紹 36 §3-1-2 樣品製作 39 §3-2 使用染料摻雜液晶樣品製作永久性二維光子晶體光柵及其 繞射特性量測 43 §3-2-1 製作二維光子晶體光柵實驗裝置圖 43 §3-2-2 偏光顯微鏡觀察寫入DDLC樣品之二維光子晶體光柵結構 45 §3-2-3 寫入DDLC樣品之二維光子晶體光柵繞射特性量測 46 第四章 實驗結果與討論 50 §4-1 在POM下觀察DDLC樣品寫入二維TN-LC向量光柵之結構圖與多階偵測繞射光特性量測 50 §4-1-1 於DDLC樣品寫入二維TN-LC向量光柵結構之預測與討論 50 §4-1-2 DDLC樣品寫入二維TN-LC向量光柵結構與繞射特性之理論模擬與實驗結果之比較討論 53 §4-2 外加電場調控偵測光經二維TN-LC向量光柵DDLC樣品之繞射光束光強度量測與討論 62 §4-3 外加光場對偵測光經過二維TN-LC向量光柵DDLC樣品之繞射光強度做全光調控量測與討論 65 第五章 結論與未來展望 69 §5-1 結論 69 §5-2 未來展望 70 參考文獻 72

    [1] G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. C. Jones, and R. A. Pelcovits, J. Appl. Phys. 98, 123102 (2005).
    [2] S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, Appl. Phys. Lett. 71, 3613 (1997).
    [3] P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, and W. Chen, Phys. Rev. B 57, 3874 (1998).
    [4] I. C. Khoo, S. Slussarenko, B. D. Guenther, M. Y. Shih, P. Chen, and W. V. Wood, Opt. Lett. 23, 253 (1998).
    [5] B. Saad, M. M. Denariez-Roberge, and T. V. Galstyan, Opt. Lett. 23, 727 (1998).
    [6] O. Francescangeli, S. Slussarenko, F. Simoni, D. Andrienko, V. Reshetnyak, and Y. Reznikov, Phys. Rev. Lett. 82, 1855 (1999).
    [7] E. Ouskova, D. Fedorenko, Yu. Reznikov, S. V. Shiyanovskii, L. Su, J.L.West, O.V. Kuksenok, O. Francescangeli, and F. Simoni, Phys. Rev. E. 63, 021701 (2001).
    [8] W.-Y. Wu, M.-S. Li, H.-C. Lin, and Andy Y.-G. Fuh, J. Appl. Phys. 103, 083119 (2008).
    [9] S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, Opt. Lett. 31, 22 (2006).
    [10] 松本正一,角田市良著,劉瑞祥譯,液晶之基礎與應用,國立編繹館出版(1996)。
    [11] P. G. de Gennes and J. Prost, The physics of Liquid Crystals, 2nd ed. (Clarendon Press, Oxford, 1993).
    [12] L. M Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).
    [13] B. Bahoadur, Liquid Crystals-Applications and Uses (World Scientific Press, Singarpore, 1990).
    [14] A. J. Lovinger, K. R. Amundson and D. D. Davis, Chem. Mater. 6, 1726 (1994).
    [15] G. R. Fowles, Introduction to Modern Optics, 2nd ed. (University of Utah, New York, 1975).
    [16] I.-C. Khoo, Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena (John Wiley & Sons Press, New York, 1995).
    [17] I. Jánossy and A. D. Lloyd, Mol. Cryst. Liq. Cryst. 203, 74 (1991).
    [18] F. Simoni and O. Francescangeli, J. Phys: Condensed. Matter. 11, R439 (1999).
    [19] W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, Nature 351, 49 (1991).
    [20] D. Voloshchenko, A. Khyzhnyak, Y. Reznikov and V. Reshetnyak, Jpn. J. Appl. Phys. 34, 566 (1995).
    [21] E. Ouskova, Yu. Reznikov, S.V. Shiyanovskii, and F.Simoni, Phys. Rev. E. 64, 051709 (2001).
    [22] Andy Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, C.-L. Lu, and C.-Y. Tsai, Opt. Lett. 26, 1767 (2001).
    [23] Andy Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, C.-L. Lu, Opt. Lett. 28, 1179 (2003).
    [24] C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, Appl. Phys. Lett. 83, 4285 (2003).
    [25] Andy Y.-G. Fuh, C.-Y. Lu, T.-S. Mo, M.-S. Tsai, Jpn. J. Appl. Phys. 42, 7344 (2003).
    [26] C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, Phys. Rev. E. 69, 031704 (2004).
    [27] Pochi Yeh and Claire Gu, Optics of Liquid Crystal Displays (Wiley Interscience Publication, New York, 1999).
    [28] H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin Heidelberg, 1986).
    [29] R. W. Boyd, Nonlinear Optics (Academic Press, London, 1992).
    [30] P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley & Sons, Inc. New York, 1993).
    [31] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [32] S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [33] V. K. S. Hsiao and C.-Y. Ko, Opt. Express 17, 12670 (2007).
    [34] M.-S. Li, S.-T. Wu, and Andy Y.-G. Fuh, Appl. Phys. Lett. 88, 091109 (2006).
    [35] T. D. Ebralidze, Opt. Spektrosk. 53, 944 (1982).
    [36] T.-H. Lin, Y. Huang, Andy Y.-G. Fuh, and S.-T. Wu, Opt. Express 14, 2359 (2006).
    [37] T.-H. Lin and Andy Y.-G. Fuh , Opt. Lett. 30, 1390 (2005).
    [38] T. Ya. Marusii, Yu. A. Reznikov and S. Slussarenko, Mol. Mater. 6, 163 (1996).
    [39] L. M. Blinov, M. I. Barnik, A. Mazzulla and C. Umeton, Mol. Mater. 5, 237 (1995).
    [40] O. B. Pantaleon, R. P. Aguilar, A. S. Castillo, J. C. Ramirez-San-Juan, R. R.Garcia and E. A. Gonzalez, Mol. Cryst. Liq. Cryst. 488, 1 (2008).
    [41] T. Ikeda, J. Mater. Chem. 13, 2037 (2003)
    [42] E. Hetch, Optics, 4th ed. ( San Francisco, Addison Wesley, 2002).
    [43] I. Janossy and L. Szabados, Phys. Rev. E 58, 4598 (1998). ; I. Janossy and L. Szabados, J. Nonlinear Opt. Phys. & Mater. 7, 539 (1998).
    [44] M. I. Barnik, A. S. Zolot’ko, V. G. Rumyantsevn and D. B. Terskov, Kristallografiya 40, 746 (1995).

    下載圖示 校內:2011-08-26公開
    校外:2011-08-26公開
    QR CODE