簡易檢索 / 詳目顯示

研究生: 李元煌
Lee, Yuan-Huang
論文名稱: 應用奈米量子點於細胞觀測之研究
Uptake of Quantum Dots into the Osteoblast Cells Utilizing Electroporation and Endocytosis
指導教授: 林裕城
Lin, Y. C.
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 133
中文關鍵詞: 微機電奈米量子點胞噬作用電胞膜穿孔
外文關鍵詞: Semiconductor quantum dots(QDs), MEMS, Endocytosis, Electroporation
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   半導體奈米量子點是一種具有光致變色的嶄新材料,在生物醫學領域上常被廣泛的應用於螢光標定物及各種的生醫檢測,經由生物修飾後的奈米量子點可用於多種蛋白質追蹤與細胞行為長期的觀察。因此對奈米量子點被細胞攝入後,於胞內之行為表現與細胞胞器的相互作用值得作深入的探討。在研究中利用硒化鎘(核)包覆硫化鋅(殼)[CdSe/ZnS]此種奈米量子點,以兩種不同的物理機制,細胞自發性胞噬作用與電胞膜穿孔法將其送入老鼠成骨細胞 (MC3T3E-1),進行觀察奈米量子點在不同機制下在細胞內的行為表現。
      實驗的方法主要可分為三大方向,1、水相奈米量子點的製備,主要是利用化學氧化還原法進行合成具有親水性的奈米量子點,2、微型轉殖晶片製作,利用微機電製程技術在玻璃基材上製作出薄膜電極並利用高分子材料定義細胞反應區,3、生物奈米量子點傳遞觀察實驗,以電胞膜穿孔法與胞噬法在不同時間、濃度與緩衝液等參數調配下,將奈米量子點送入細胞,進行即時性細胞觀察與定性分析,研究中搭配不同的傳統染劑,比較兩者表現上的差異與觀察奈米量子點和細胞胞器結合的關聯性。偵測上,利用螢光顯微鏡、共軛焦顯微鏡及穿透式電子顯微鏡對所探討之樣本進行多項驗證,作為定性分析之交互比較,在論文中對於不同的樣品之前處理步驟也加以討論。
      研究可歸類出以下幾點重要結果:其一成功合成水相奈米量子點,發現其對細胞轉殖作用性良好,可應用於生物系統光學追蹤,其二以電胞膜穿孔法將奈米量子點送入細胞內的數量高於胞噬作用,證明微型轉殖晶片具有高效率的穿孔效果,其三胞噬法與電胞膜穿孔法會造成奈米量子點傳輸機制與行為表現不同,第四點奈米量子點比傳統染劑更適合進行活體長期觀察與追蹤分析。第五點奈米量子點具有優良載體之特性,研究中發現它能經由兩種機制之輸送而進入細胞核內,因此我們藉由此項研究進一步了解奈米粒子與細胞作用的關係及可能應用的範圍,為生物奈米研究有了基礎的貢獻。

      Semiconductor quantum dots (QDs) are a novel photochromic material. QDs have been applied to immunofluorescent labeling and various biological detection. With bioconjugated QDs, cells can be observed for long terms and multiple proteins can be traced. After the uptake of QDs, we discuss distribution of QDs inside cells and the interrelationship between organelles and QDs. In my study, we observe behavior of QDs inside cells under two kinds of uptake mechanisms-endocytosis and electroporation.
      Three main topics: (1)Synthesis of hydrophilic QDs by using oxidation-reduction reaction; (2)Fabrication of micro Biochip, we employ MEMS(Micro Electro-Mechanical Systems) technique to make thin film electrodes on microslide and define the reaction area of cells by macromolecule material PDMS; (3)Observation of QDs inside cells, Under endocytosis and electroporation, with the adjustment of different time lapse points, concentration of QDs, and buffers, we make real time detection and qualitative analysis after the uptake of QDs. In comparison to organic dyes, we discuss behavior between QDs and dyes inside cells. By exercising fluorescent microscope, confocal microscope and Transmission Electron Microscope, we get some results for qualitative analysis and interaction. In this study, we also discuss pre-treatment for different samples.
      We find some important results: (1)We successfully synthesize hydrophilic QDs and it is well applied to biosystem opitcal trace; (2)Transfection ratio of electroporation is better than that of endocytosis for QDs; (3)Different physical mechanisms have different communication and behavior between QDs and cells; (4)QDs are more suitable than organic dyes in long term observation and analysis trace; (5) We find QDs get into nucleus by endocytosis and electroporation, to prove that QDs own good vector characteristic. By this study, we further understand not only the relationship between nanoparticles and cells but also its applicable field.

    摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 X 表目錄 XV 第一章 緒論 1 1.1前言 1 1.2文獻回顧 4 1.3研究動機與目的 7 1.4實驗架構 9 第二章 奈米量子點生物光學理論分析與細胞內噬原理 12 2.1 奈米量子點簡介 12 2.2 奈米量子點光學理論分析 14 2.2.1 量子侷限效應(Quantum Confinement effect) 16 2.2.2 螢光量子效率(Quantum Yield) 17 2.2.3 斯托克位移(Stokes shift) 18 2.2.4 奈米量子點與傳統染劑的比較 19 2.3 電胞膜穿孔基本原理 26 2.3.1 細胞膜特性 26 2.3.2 可逆性的電崩潰 28 2.4 細胞對巨分子與顆粒物的運輸 30 2.4.1胞飲作用(Pinocytosis) 32 2.4.2吞噬作用(Phagocytosis) 32 2.4.3受體媒介之胞噬作用(Receptor-Mediated Endocytosis) 33 2.4.4胞吐作用(Exocytosis) 34 2.5 免疫螢光染色 35 第三章 實驗設計及實驗平台建立 37 3.1 量子點硒化鎘/硫化鋅合成法 37 3.2 電胞膜穿孔晶片製作 43 3.2.1 晶片設計 43 3.2.2 晶片電場模擬 47 3.2.3 晶片製程 49 3.2.3.1 基板清洗 50 3.2.3.2 金屬蒸鍍 52 3.2.3.3 微影(Lithography) 53 3.2.3.4 金屬蝕 55 3.2.3.5 細胞反應區封裝 56 3.3 細胞培養與實驗方法 58 3.4 胞噬法及電胞膜穿孔之實驗方法 60 3.5 螢光顯微鏡偵測系統及螢光染劑介紹 61 3.5.1 粒腺體染劑M-7511 62 3.5.2 細胞核染劑Hoechst-33258 64 3.5.3 細胞膜染劑DiIC18 65 3.6 共軛焦顯微鏡偵測原理及樣品前處理 67 3.6.1共軛焦顯微鏡偵測原理 67 3.6.2 共軛焦顯微鏡樣品前處理 70 3.7 穿透式電子顯微鏡偵測原理及樣品前處理 73 3.7.1 穿透式電子顯微鏡偵測原理 74 3.7.2 穿透式電子顯微鏡樣品前處理 77 第四章 結果與討論 80 4.1 奈米量子點特性與分析方法 80 4.2 傳統免疫染色法與半導體奈米粒子染色法比較 88 4.2.1 傳統免疫染色法與奈米量子點呈色表現 88 4.2.2 奈米量子點和M-7511在染色中的交互作用 89 4.2.3 傳統免疫染色和奈米量子點在染色時效比較 96 4.3 不同物理機制下奈米量子點在細胞內的分佈探討 103 4.3.1 奈米量子點在胞噬作用下其分佈探討 104 4.3.2 奈米量子點在電胞膜穿孔下其分佈探討 111 4.4 不同材質的奈米粒子及粒徑對胞噬作用的影響 118 4.4.1 不同材質的奈米粒子對胞噬作用的影響 118 4.4.2 不同粒徑的奈米粒子在細胞內的分佈情況 121 第五章 結論與建議 124 5.1結論 124 5.2 建議 126 參考文獻 127

    [1] K. Durick, P. Negulesu, Cellular biosensors for drug discovery, Biosensors & Bioelectronics, 16, pp. 587-592, 2001.
    [2] C. A. Mirkin, R. L. Letsinger, R. C. Mucic & J. J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, 382, pp. 607-609, 1996.
    [3] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 277, pp. 1078-1081, 1997.
    [4] J. J. Storhoff, R. C. Mucic, R. L. Letsinger & C. A. Mirkin, DNA-Directed Synthesis of Binary Nanoparticle Network Materials, J . Am. Chem. Soc. 120, pp. 12674-12675, 1998.
    [5] C. B. Murray, D. J. Norris, and M. G. Bawendi, Synthesis and Characterization of Nearly Monodisperse CdE(E=S,Se,Te) Semiconductor Nanocrystallites, J.Am.Chem.Soc. 115, pp. 8706-8715, 1993.
    [6] Z. A. Peng and X. Peng, Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using Cdo as Precursor, J. Am. Chem. Soc. 123, pp. 183-184, 2001.
    [7] Z. A. Peng and X. Peng, Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes: Nucleation and Growth, J. Am. Chem. Soc. 124, pp. 3343-3353, 2002.
    [8] L. Qu, Z. A. Peng and X. Peng, Alternative Routes toward High Quality CdSe Nanocrystals, Nano Letters, 1, pp. 333-337, 2001.
    [9] L. Qu and X. Peng, Control of Photoluminescence Properties of CdSe Nanocrystals in Growth, J. Am. Chem. Soc. 124, pp. 2049-2055, 2002.
    [10] M. A. Hines and P. Guyot-Sionnest, Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals, J. Phys. Chem. 100, pp. 468-471, 1996.
    [11] X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility, J. Am. Chem. Soc. 119, pp. 7019-7029, 1997.
    [12] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites, J. Phys. Chem. B, 101, pp. 9463-9475, 1997.
    [13] I. Mekis, D. V. Talapin, A. Kornowski, M. Haase, and H. Weller, One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and "Greener" Chemical Approaches, J.Phys. Chem. B, 107, pp. 7454-7462, 2003.
    [14] M. Brust, D. Bethell, D. J. Schiffrin, and O. J. Kiely, C 60 mediated aggregation of gold nanoparticles, Adv. Mater. 7, pp. 795-797, 1989.
    [15] L. H. Dubois, and R. G. A. Nuzzo, Synthesis, Structure, and Properties of Model Oraganic Surfaces, Rev. Phys. Chem. 43, pp. 437-463, 1992.
    [16] W. C. W. Chan and S. Nie, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science, 281, pp. 2016-2018, 1998.
    [17] H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein, J. Am. Chem. Soc. 122, pp. 12142-12150, 2000.
    [18] J. Aldana, Y. A. Wang, and X. Peng, Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols, J. Am. Chem. Soc, 123, pp. 8844-8850, 2001.
    [19] E. R. Goldman, E. D. Balighian, H. Mattoussi, M. K. Kuno, J. M. Mauro, P. T. Tran, and G. P. Anderson, Avidin: A Natural Bridge for Quantum Dot-Antibody Conjugates, J. Am. Chem. Soc. 124, pp. 6378-6382, 2002.
    [20] W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, Luminescent quantum dots for multiplexed biological detection and imaging, Current Opinion in Biotechnology, 13, pp. 40-46, 2003.
    [21] V. I. Kimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, Optical Gain and Stimulated Emission in Nanocrystal Quantum Dot Science, 290, pp. 314-317, 2000.
    [22] B. O. Dabbousi, M. G. Bawendi, O. Onitsukaa, and M. F. Rubner, Electroluminescence from CdSe Quantum-Dot Polymer/composites, Appl. Phys. Lett. 66, pp. 1316-1318, 1995.
    [23] C. Wang, M. Shim, P. Guyot-Sionnest, Electrochromic Nanocrystal Quantum Dots, Science, 291, pp. 2390-2392, 2001.
    [24] S. Coe, W. K. Woo, M. Bawendi, and W. Bulovic, Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature, 420, pp. 800-803, 2002.
    [25] M. Han, X. Gao, J. Z. Su, and S. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat. Biotechnol. 19, pp. 631-635, 2001.
    [26] J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat. Biotechnol. 21, pp. 47-51, 2003.
    [27] X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dot, Nat. Biotechnol. 21, pp. 41-46, 2003.
    [28] D. S. Lidke, P. Nagy, R. Heintzrnann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman, and T. M. Jovin, Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction, Nat. Biotechnol. 22, pp. 198-203, 2004.
    [29] M. B. Jr., M. Moronne, P. Gin, S. Weiss, A. Paul Alivisatos, Semiconductor Nanocrystals as Fluorescent Biological Labels, Science, 281, pp. 2013-2015, 1998.
    [30] A. Sukhanova, J. Devy, L. Venteo, H. Kaplan, M. Artemyev, V. Oleinikov, D. Klinov, M. Pluot, J. H. M. Cohen, and I. Nabieva, Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells, Analytical Biochemistry, 324, pp. 60-67, 2004.
    [31] X. Gao, and S. Nie, Molecular profiling of single cells and tissue specimens with quantum dots, TRENDS in Biotechnology, 21, pp. 371-373, 2003.
    [32] X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling, Single Mol. 2, pp. 261-276, 2001.
    [33] M. Dahan, T. Laurence, F. Pinaud, D. S. Chemla, A. P. Alivisatos, M. Sauer, and S. Weiss, Time-gated biological imaging by use of colloidal quantum dots, Opt. lett. 26, pp. 825-827, 2001.
    [34] G. P. Mitchell, C. A. Mirkin, and R. L. Letsinger Programmed assembly of DNA functionalized quantum dots, J. Am. Chem. Soc, 121, pp. 8122-8123, 1999.
    [35] S. Pathak, S. K. Choi, N. Arnheim, and M. E. Thompson, Hydroxylated quantum dots as luminescent probes in situ hybridization, J. Am. Chem. Soc, 123, pp. 4103-4104, 2001.
    [36] A. Hoshino, K. I. Hanaki, K. Suzuki, and K. Yamamoto, Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body, Biochemical and Biophysical Research Communication, 314, pp. 46-53, 2004.
    [37] M. E. Akerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, Nanocrystal targeting in vivo, Proc. Natl. Acad. Sci. 99, pp. 12617-12621, 2002.
    [38] B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A. Libchaber, In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles, Science, 298, pp. 1759-1761, 2002.
    [39] F. Hatami, M. Grundmann, N. N. Ledentsov, F. Heinrichsdorff, R. Heitz, J. Bohrer, and D. Bimberg, Carrier dynamics in type-II GaSb/GaAs quantum dots, PHYSICAL REVIEW B, 57, pp. 4635-4641, 1998.
    [40] S. Kim, B. Fisher, H. J. Eisler, and M. Bawendi, Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures, J. Am. Chem. Soc. 125, pp. 11466-11467, 2003.
    [41] S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. L. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni, Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping, Nat. Biotechnol. 22, pp. 93-97, 2004.
    [42] Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging, Molecular Imaging, 2, pp. 50-64, 2003.
    [43] J. V. Frangioni, In vivo near-infrared fluorescence imaging, Current Opinion in Chemical Biology, 7, pp. 626-634, 2003.
    [44] http://www.qdots.com
    [45] 黃明遠, 胞膜電穿孔基因轉殖晶片之研究, 國立成功大學工程科學研究所, 民國九十年.
    [46] http://sun.menloschool.org/~cweaver/cells/c/cell_membrane/
    [47] T. Kotnik and D. Miklavcic, Analytical Description of Transmembrane Voltage Induced by Electric Fieldson Spheroidal Cells, Biophysical Journal, 79, pp. 670-679, 2000.
    [48] http://www.bmb.psu.edu/courses/bisci004a/cells/cellstruc.htm
    [49] http://fig.cox.miami.edu/~cmallery/150/memb/membranes.htm
    [50] http://faculty.washington.edu/kepeter/118/photos/non-specific_image.htm
    [51] 周必泰, 懸浮性II-VI 族化合物半導體奈米粒子之合成與鑑定, 國立台灣大學化學研究所, 民國92年.
    [52] C. B. Murray, C. R. Kagan, M. G. Bawendi, Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assembles, Annu. Rev. Mater. Sci. 30, pp. 545-610, 2000.
    [53] Molecular Probes Handbook
    [54] A. Vercelli, M. Repici, D. Garbossa, and A. Grimaldi, Recent techniques for tracing pathways in the central nervous system of developing and adult mammals, Brain Res Bull, 51, pp. 11-28, 2000.
    [55] www.leica.com
    [56] 郭懿純, 生物電子顯微鏡學, 國科會精密儀器中心, 民國八十年.
    [57] N. P. Voloshina, R. P. Haugland, J. B. Stewart, M. K. Bhalgat, P. J. Millard, F. Mao, W. Y. Leung, and R. P. Haugland, Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates, J. Histochem. Cytochem. 47, pp. 1179-1188, 1999.
    [58] M. Thomas and A. M. Klibanov, Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells, Proc. Natl. Acad. Sci. 100, pp. 9138-9143, 2003.

    下載圖示 校內:2009-08-24公開
    校外:2014-08-24公開
    QR CODE