簡易檢索 / 詳目顯示

研究生: 王俐雯
Wang, Li-Wen
論文名稱: 鋼筋混凝土柱於高溫及冷卻階段之變形分析
Analysis of Thermal Deformation of Reinforced Concrete Columns during Heating and Cooling Stages
指導教授: 方一匡
Fang, I-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 90
中文關鍵詞: 鋼筋混凝土火害冷卻變形預測
外文關鍵詞: Reinforced concrete, Column, Fire, Cooling, Deformation
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結構之穩定性為建築物於火災後安全評估的重要考量之一,柱構件破壞會危及整體結構,本研究主要目的為探討鋼筋混凝土柱在承受偏心與無偏心之不同載重之下,於升溫與冷卻階段之軸向變形行為。
    本研究以長柱、梁柱接頭構件模擬火場中四面及三面受火之情形,建立升溫及冷卻階段之熱應變模型,根據模型所預測之軸向變形,與試驗之觀察現象和量測位移對照,探討預測方法與實際現象之差異。
    模擬溫度與實測溫度的溫度差,以及試體的爆裂程度,會影響柱變形之預測結果,導致預測之位移量與實際值之間的差異。混凝土於高溫中會有不可逆之殘餘應變,分析時應考慮試體之溫度歷程與混凝土劣化的影響,以符合熱應變於冷卻中之實際現象。將偏心載重柱之變形預測視同為無偏心載重柱,再將偏心產生之彎矩作用疊加,所得之熱變形預測結果誤差甚小,能有效簡化運算。

    The stability of the structure is one of the safety evaluation of buildings after fire. Destruction of columns would endanger overall structure. This study mainly aims to study the thermal deformation of axially and eccentrically loaded reinforced concrete columns subjected to different loads during heating and cooling stages.
    In this study, we use single columns and beam-column sub-assemblages to simulate structure with three sides and four sides exposed to fire, also create heating and cooling strain model to analyze axial displacement.
    The analysis of deformation would be affected by the disparity of temperatures between analysis and test, along with spalling of concrete. Cracks generated by deteriorating concrete during heating up lead to irreversible residual deformations. To correspond with this phenomenon, the analysis should consider the influence of residual strain in cooling phase. In order to simplify the analysis of thermal deformation of eccentrically loaded specimens, the effect of eccentric load is divided into axial load and moment, respectively. The results of prediction are well correlated to the tests.

    摘要 I 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIV 符號表 XVIII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究方法 1 第二章 文獻回顧 2 2-1混凝土於高溫下之應變 2 2-1-1 自由熱應變 5 2-1-2荷載引致熱應變 9 2-1-2-1瞬時應力相關應變 13 2-1-2-2暫態潛應變 14 2-2 鋼筋於高溫下之應變 21 2-2-1熱膨脹應變 21 2-2-2應力應變曲線 22 第三章 分析方法與結果 25 3-1 試體斷面溫度之數值模擬 25 3-1-1 試體分析模型 26 3-1-2 升溫曲線 28 3-1-3 混凝土熱學性質 30 3-2 高溫及冷卻階段柱之熱變形預測方法 32 3-2-1承受無偏心載重柱之熱變形預測方法 34 3-2-2承受偏心載重柱之熱變形預測方法 45 3-3 高溫及冷卻階段住之熱變形預測結果 51 3-3-1 前期試體之簡介 51 3-3-2前期試體熱變形預測與實驗值之比較 63 3-3-2-1鋼筋混凝土長柱試體 63 3-3-2-2 梁柱接頭構件 76 第四章 結論 85 第五章 參考文獻 87  

    1.American Society for Testing and Materials, “ASTM E119:Standard Test Methods for Fire Tests of Building Construction and Materials,” The United States of America, 2000.

    2.European Committee, “Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire,” Brussels, 2002.

    3.European Committee, “Eurocode2 : Design of concrete structures - Part 1-2 : General rules - Structural fire design,” Brussels, 1995.

    4.European Committee, “Eurocode2 : Design of concrete structures - Part 1-2 : General rules - Structural fire design,” Brussels, 2004.

    5.Lie, T. T., “Structural fire protection,” American Society of Civil Engineers, New York, 1992.

    6.Liaison Committee “Fire design of concrete structures - materials, structures and modelling,” fib Bulletin No. 38, Switzerland, 2007.

    7.Purkiss, J. A., “Fire Safety Engineering Design of Structures” Butterworth Heinemann, Oxford, 1996.

    8.Purkiss, J. A.; Li, L.Y., “Fire Safety Engineering Design of Structures, third edition,” CRC Press, Oxford, 2013.

    9.Anderberg, Y.; Thelandersson, S., “Modeling of Combined Thermal and Mechanical Action in Concrete,” Journal of Engineering Mechanics, Vol. 113, No. 6, pp. 893-906, 1987.

    10.Bastami, M.; Alslani, F., “Preloaded High-Temperature Constitutive Models and Relationships for Concrete,” Scientia Iranica, Vol. 17, No. 1, pp. 11-25, 2010.

    11.Gernay, T., “Effect of Transient Creep Strain Model on the Behavior of Concrete Columns Subjected to Heating and Cooling,” Fire Technology, Vol. 48, pp. 313-329, 2012.

    12.Gernay, T.; Franssen, J. M., “A formulation of the Eurocode 2 concrete model at elevated temperature that includes an explicit term for transient creep,” Fire Safety Journal, Vol. 51, pp. 1-9, 2012.

    13. Khoury, G. A.; Grainger, B. N.; Sullivan, P. J. E., “Strain of Concrete During First Heating to 600˚C Under Load,” Magazine of Concrete Research, Vol. 37, No. 133, pp. 195-215, 1985.

    14.Lie, T. T.; Lin, T. D.; McGrath, R., “Fire Tests on Reinforced Concrete Columns Specimens No. 10-12, PhaseⅡ,” National Research Council of Canada Division of Building Research, DBR Internal Report No.497, pp. 1-33, 1985.

    15.Li, L.Y.; Purkiss, J. A., “Stress-Strain Constitutive Equations of Concrete Material at Elevated Temperatures,” Fire Safety Journal, Vol. 40, pp. 669-686, 2005.

    16.Nielsen, C. V.; Pearce, C. J.; Bicanic, N., “Theoretical Model of High Temperature Effects on Uniaxial Concrete Member under Elastic Restraint,” Magazine of Concrete Research, Vol. 54, No. 4, pp. 239-249, 2002.

    17.Schneider, U., “Concrete at High Temperature-A General Review,” Fire Safety Journal, No. 13, pp. 55-68, 1988.

    18.Schneider, U.; Schneider, M.; Franssen, J.-M., “Consideration of Nonlinear Creep Strain of Siliceous Concrete on Calculation of Mechanical Strain under Transient Temperatures as a Function of Load History,” Proceedings of the Fifth International Conference on Structures in Fire SIF 08, pp. 463-476, 2008.

    19.Schneider, U.; Schneider, M., “An Advanced Transient Concrete Model for the Determination of Restraint in Concrete Structures Subjected to Fire,” Journal of Advanced Concrete Technology, Vol. 7, No. 3, pp. 403-413, 2009.

    20.Schneider, U.; Schneider, M., “Experimental Study of the Advanced Transient Concrete Model on Reinforced Concrete Columns During Fire Exposure,” The Open Construction and Building Technology Journal, No. 4, pp. 79-87, 2010.

    21.Terro, M. J., “Numerical Modeling of the Behavior of Concrete Structures in Fire,” ACI Structure Journal, Vol. 95, No. 2, pp. 183-193, 1998.

    22.Youssef, M.A.; Moftah, M., “General stress-strain relationship for concrete at elevated temperatures”, Engineering Structures, No. 29, pp. 2618-2634, 2007.

    23.CNS 12514-1,「建築物構造部分耐火試驗法」,中華民國國家標準,經濟部標準檢驗局, 2014。

    24.劉泰慰,「鋼筋混凝土房屋構件在高溫中、後之行為研究─普通混凝土與自充填混凝土外柱之行為」,碩士論文,國立成功大學土木工程研究所,台南,2009。

    25.黃瑞賢,「鋼筋混凝土梁柱複合構件受高溫之行為研究─普通混凝土外柱之行為」,碩士論文,國立成功大學土木工程研究所,台南,2010。

    26.施玟宇,「鋼筋混凝土梁柱複合構件受高溫之行為研究─自充填混凝土外柱之行為」,碩士論文,國立成功大學土木工程研究所,台南, 2010。

    27.劉彥汶,「鋼筋混凝土柱於高溫中之熱變形預測」,碩士論文,國立成功大學土木工程研究所,台南, 2013。

    28.王江倫,「承受無偏心載重鋼筋混凝土柱於高溫中之變形」,碩士論文,國立成功大學土木工程研究所,台南, 2014

    29.陳彥霖,「承受偏心載重鋼筋混凝土柱於高溫中之變形」,碩士論文,國立成功大學土木工程研究所,台南, 2014。

    無法下載圖示 校內:2020-09-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE