| 研究生: |
邱帝凱 Chiu, Ti-kai |
|---|---|
| 論文名稱: |
無元素葛勒金法於二維彈性動力分析 Element-Free Galerkin Method for the Analysis of 2D Elastodynamic |
| 指導教授: |
王永明
Wang, Yung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 微分再生核 、葛勒金法 、無元素法 |
| 外文關鍵詞: | DRKA, Galerkin, Element-Free |
| 相關次數: | 點閱:53 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文中利用無元素葛勒金法求解二維彈性動力問題,並以微分再生核近似法求得狀函數及其導函數,其中微分再生核近似法建構出的形狀函數及其導函數,在高階導數中具有連續性,因此使用此方法在應力方面所得之結果比有限元素法更可獲得較佳之精度及連續性。
本文的數值範例所得之結果與ABAQUS進行比較,並與一維震動棒之解析解比較,其成果令人滿意,再度驗證本文使用方法於二維彈性動態分析上之可行性。
In this paper we use the element free Galerkin method to solve the 2-D elastic-dynamical problems. The shape functions and it’s derivation are obtained by the differential reproduction kernel approximation(DRKA).The shape functions and its derivations conducted from the DRKA is high order continuous in the global, thus the stress acquired form present method is more continuous and accuracy than the finite element method.
In the numerical example we comparing the data analyzed in this article and by ABAQUS, also compared the result with analytic solution of a 1-D vibration of a rod. The result is satisfying and proves the feasibility of present method on 2-D elastic-dynamical analysis.
[1] L. B. Lucy, A numerical approach to the testing of the fission hypothesis, The Astron, J.8, 12, 1013-1024 (1977).
[2] B. Nayroles, G. Touzot and P. Villon, Generalizing the finite element method diffuse approximation and diffuse elements, Computational Mechanics, 10, 307-318 (1992).
[3] T. Belytschko, L. Gu and Y. Y. Lu, Fracture and crack growth by element-free Galerkin methods, Modeling and Simulation in Materials Science and Engineering,2 , 519-534 (1994).
[4] W. K. Liu, S. Jun and Y. F. Zhang, Reproducing kernel particle methods, Int. J. Numerical methods Engineering, 20, 1081-1106 (1995).
[5] J. S. Chen, C.T. Wu and W.K. Liu, Reproducing kernel particle methods for large deformation analysis of non-linear structures, Computer methods in Applied Mechanics And Engineering, 139, 195-227. (1996).
[6] E. Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor and C. Sacco, A stabilized finite point method for analysis of fluid mechanics problems, Computer Methods in Applied Mechanics & Engineering, 139, 315-346 (1996).
[7] S. Li, W. Hao and W. K. Liu, Numerical simulation of large deformation of thin shell structures using meshfree methods, Computational Mechanics, 25, 102-116 (2000).
[8] G. J. Wagner and W. K. Liu, Turbulence simulation and multiple scale subgrid models, Computational Mechanics, 25, 117-136 (2000).
[9] J. S. Chen, H. P. Wang, S. Yoon and Y. You, Some recent improvements in meshfree methods for incompressible finite elasticity boundary value problems with contact, Computational Mechanics, 25, 137-156 (2000)
[10]盛若磐, 元素釋放法積分法則與權函數之改良, 近代工程計算論壇論文集, 國立中央大學土木系, 2000.
[11] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl, An Overview and Recent Developments, Computer methods in Applied Mechanics & Engineering, 139, 3-47(1996).
[12] P. Krysl and T.Belytschko, A Library to Compute The Element Free Galerkin Shape Functions, Computer methods in Applied Mechanics & Engineering, 190, 2181-2205(2001).
[13] S. Y. Long, K.Y. Liu and D. A. Hu, A new meshless method based on MLPG for elastic dynamic problem. Engineering analysis with boundary elements, 30, 43-48(2006)
[14] Y. T. Gu and G. R. Liu, A meshless local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids, Computational Mechanics, 27, 188-198(2001)
[15] S. N. Atluri and T. L. Zhu, The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Computational Mechanics, 25,165-179(2000)
[16] T. Belytschko, Y. Y. Lu and L. Gu, Element-Free Galerkin methods. International journal for numerical methods in engineering, 37,229-256 (1994)
[17]許昱元, 無元素在彈性振動之分析, 碩士論文, 國立成功大學土木研究所, 2003
[18]李政達, 元素釋放法於彈性動力之研究, 碩士論文, 私立中原大學土木工程學系, 2002
[19] 謝宜典, 無元素葛勒金法, 碩士論文, 國立中央大學機械工程研究所, 2006