簡易檢索 / 詳目顯示

研究生: 連峻儀
Lien, Jiun-Yi
論文名稱: 成對奈米碳管的電子與光學性質
Electronic and optical properties of a pair of carbon nanotubes
指導教授: 林明發
Lin, Min-Fa
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 50
中文關鍵詞: 奈米碳管成對光學吸收譜電子能帶結構管間交互作用
外文關鍵詞: carbon nanotube, optical absorption spectrum, electronic energy dispersion, pair, intertube interaction
相關次數: 點閱:86下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文以緊密束縛模型與梯度近似來探討成對單壁奈米碳管的電子能帶結構與光學性質。在碳管與碳管之間的電子穿隧作用影響,電子能帶與光學性質皆與碳管間的堆疊方式有密切關係。在費米能附近的管間交互作用主要可分為兩種:(1) 對應到單層石墨相同倒晶格點的管間交互作用與 (2) 對應到相反倒晶格點的交互作用。前者主導手椅狀與異螺旋碳管對的低能性質,而同螺旋碳管對則由後者主導;對鋸齒狀碳管對而言則是兩種交互作用皆存在。我們得計算結果預測了由少數根相同碳管堆疊的系統具有與單一碳管或大型碳管束即為不同的電子性質。此外,成對碳管的能帶結構可透過施加不同方向和強度的電場或磁場來調製,而我們發現一個沿著特定方向的微擾電場或磁場可以抑制碳管間的交互作用。當碳管對中的電子受到光子激發時,只有相同對稱性的佔據態與非佔據態間才允許躍遷,因此具有不同對稱性的次能帶的能量排列順序完全決定的光學吸收譜上的特徵。而結合外加場抑制管間交互作用的特性,我們的計算結果可用於判斷光學吸收譜上的特徵是否源自管間交互作用,進而了解碳管系統中的堆疊方式與少根碳管束中的獨特性質。

    The tight-binding model with the gradient approximation is employed to study the band structures and the optical absorption spectra of pairs of single-wall carbon nanotubes. With intertube interactions, both electronic and optical properties are sensitive to the stacking types. The low-energy intertube interactions can be identified as electron hopping between (i) K and K, as well as (ii) K and K' points on each tube. The former dominates the energy dispersion near Fermi level for armchair and heterochiral pairs while the later for homochiral ones. Both types of interactions take place for zigzag pairs. As a result of the stacking-type dependence of intertube interactions, the low energy dispersions of identical two-tube or few-tube bundles are predicted to differ from single tubes or large bundles. Modulation of the band structures can be achieved by applying magnetic or transverse electric fields, depending on the field strength and field direction. Furthermore, a weak field along particular direction could suppress the effects of intertube interactions. For optical excitations, the symmetry or antisymmetry of wave functions determines the selection rules. The number, the height, and the position of absorption peaks are dominated by the subband energy sequence. Besides, the subpeaks due to intertube interactions could be discriminated from those of single tubes through applying a weak transverse electric field.

    1 Introduction.............................................1 2 Geometric structures and models..........................3 3 Low-energy electronic properties........................10 3.1 Band structures.......................................10 3.2 Energy gaps vs. stacking types........................16 3.3 Density of states.....................................20 4 Electronic properties of SWCN pairs under external fields ..........................................................22 4.1 External fields within the tight-binding approximation ..........................................................22 4.2 Magneto-electronic energy dispersion..................24 4.3 Effects of gate voltage...............................30 5 Optical properties of SWCN pairs........................34 5.1 Intertube coupling and symmetry of states.............34 5.2 Optical absorption spectra............................39 5.3 Transverse electric field.............................42 6 Conclusion and discussion...............................44

    [1] R. J. Baierle, Solange B. Fagan, R. Mota, Antonio J. R. da Silva, and A. Fazzio. Electronic and structural properties of silicon-doped carbon nanotubes. Phys. Rev. B, 64(8):085413, 2001.
    [2] Shunji Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, and P. C. Eklund. Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett., 80(17):3779, 1998.
    [3] X. Blase, Lorin X. Benedict, Eric L. Shirley, and Steven G. Louie. Hybridization effects and metallicity in small radius carbon nanotubes. Phys. Rev. Lett., 72(12):1878, 1994.
    [4] J. C. Charlier, Ph. Lambin, and T. W. Ebbesen. Electronic properties of carbon nanotubes with polygonized cross sections. Phys. Rev. B, 54(12):R8377-R8380, 1996.
    [5] J. C. Charlier, J. P. Michenaud, and Ph Lambin. Tight-binding density of electronic states of pregraphitic carbon. Phys. Rev. B, 46(8):4540, 1992.
    [6] P. Delaney, H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen. Broken symmetry and pseudogaps in ropes of carbon nanotubes. Nature, 391(6666):466-468, 1998.
    [7] Noriaki Hamada, Shin-ichi Sawada, and Atsushi Oshiyama. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett., 68(10):1579, 1992.
    [8] J. H. Ho, C. L. Lu, C. C. Hwang, C. P. Chang, and M. F. Lin. Coulomb excitations in aa- and ab-stacked bilayer graphites. Phys. Rev. B, 74(8):085406, 2006.
    [9] Y. H. Ho, C. P. Chang, F. L. Shyu, R. B. Chen, S. C. Chen, and M. F. Lin. Electronic and optical properties of double-walled armchair carbon nanotubes. Carbon, 42(15):3159-3167, 2004.
    [10] Sumio Iijima. Helical microtubules of graphitic carbon. Nature, 354:56-58, 1991.
    [11] O. Jost, A. A. Gorbunov, W. Pompe, T. Pichler, R. Friedlein, M. Knupfer, M. Reibold, H. D. Bauer, L. Dunsch, M. S. Golden, and J. Fink. Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy. Appl. Phys. Lett., 75(15):2217-2219, 1999.
    [12] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388(6644):756-758, 1997.
    [13] Young-Kyun Kwon, Susumu Saito, and David Tomanek. Effect of intertube coupling on the electronic structure of carbon nanotube ropes. Phys. Rev. B, 58(20):R13314, 1998.
    [14] Young-Kyun Kwon and David Tomanek. Electronic and structural properties of multiwall carbon nanotubes. Phys. Rev. B, 58(24):R16001, 1998.
    [15] Young-Kyun Kwon and David Tomanek. Orientational melting in carbon nanotube ropes. Phys. Rev. Lett., 84(7):1483, 2000.
    [16] Paul E. Lammert, Peihong Zhang, and Vincent H. Crespi. Gapping by squashing: Metal-insulator and insulator-metal transitions in collapsed carbon nanotubes. Phys. Rev. Lett., 84(11):2453, 2000.
    [17] T. S. Li and M. F. Lin. Electronic properties of carbon nanotubes under external fields. Phys. Rev. B, 73(7):075432-7, 2006.
    [18] Jiun-Yi Lien and Min-Fa Lin. Low-energy electronic properties of a pair of carbon nanotubes. phys. stat. sol. (C), 4(2):512-514, 2007.
    [19] Jiun-Yi Lien and Ming-Fa Lin. Intertube interactions and optical absorption spectra of a pair of carbon nanotubes. unpublished, 2009.
    [20] Jiun-Yi Lien and Ming-Fa Lin. Low-energy electronic properties of pairs of identical carbon nanotubes. Philos. Mag., to be published, 2009. doi:10.1080/14786430903117158.
    [21] Jiun-Yi Lien, Wei-Cheng Mo, and Ming-Fa Lin. Magnetoelectronic properties of a carbon nanotube pair. Diamond Relat. Mater., 17(7-10):1565-1568, 2008. doi:10.1016/j.diamond.2008.01.003.
    [22] M. F. Lin. Optical spectra of single-wall carbon nanotube bundles. Phys. Rev. B, 62(19):13153, 2000.
    [23] M. F. Lin and Kenneth W. K. Shung. Plasmons and optical properties of carbon nanotubes. Phys. Rev. B, 50(23):17744, 1994.
    [24] M. F. Lin and Kenneth W. K. Shung. Magnetization of graphene tubules. Phys. Rev. B, 52(11):8423, 1995.
    [25] J. M. Luttinger. The effect of a magnetic field on electrons in a periodic potential. Phys. Rev., 84(4):814-817, 1951.
    [26] A. A. Maarouf, C. L. Kane, and E. J. Mele. Electronic structure of carbon nanotube ropes. Phys. Rev. B, 61:11156, 2000.
    [27] J. W. Mintmire, B. I. Dunlap, and C. T. White. Are fullerene tubules metallic? Phys. Rev. Lett., 68(5):631, 1992.
    [28] Takashi Miyake and Susumu Saito. Band-gap formation in (n,0) single-walled carbon nanotubes (n = 9,12,15,18): A first-principles study. Phys. Rev. B, 72(7):073404-4, 2005.
    [29] Wei-Cheng Mo, Jiun-Yi Lien, and Min-Fa Lin. Competition between intertube interactions and external electric fields on a pair of narrow-gap carbon nanotubes. Physica E, 40(5):1674-1676, 2008.
    [30] Min Ouyang, Jin-Lin Huang, Chin Li Cheung, and Charles M. Lieber. Energy gaps in "metallic" single-walled carbon nanotubes. Science, 292(5517):702-705, 2001.
    [31] R. Peierls. Zur theorie des diamagnetismus von leitungselektronen. Z. Phys. A, 80(11):763-791, 1933.
    [32] S. Reich, C. Thomsen, and P. Ordejon. Electronic band structure of isolated and bundled carbon nanotubes. Phys. Rev. B, 65(15):155411, 2002.
    [33] Wencai Ren, Feng Li, Pingheng Tan, and Hui-Ming Cheng. Raman evidence for atomic correlation between the two constituent tubes in double-walled carbon nanotubes. Phys. Rev. B, 73(11):115430-6, 2006.
    [34] R. Saito, G. Dresselhaus, and M. S. Dresselhaus. Magnetic energy bands of carbon nanotubes. Phys. Rev. B, 50(19):14698, 1994.
    [35] R. Saito, G. Dresselhaus, and M. S. Dresselhaus. Physical Properties of Carbon Nanotubes. Imperial College Press, London, 1998.
    [36] Riichiro Saito, G. Dresselhaus, and M. S. Dresselhaus. Electronic structure of double-layer graphene tubules. J. Appl. Phys., 73(2):494-500, 1993.
    [37] Matthew Y. Sfeir, Feng Wang, Limin Huang, Chia-Chin Chuang, J. Hone, Stephen P. O'Brien, Tony F. Heinz, and Louis E. Brus. Probing electronic transitions in individual carbon nanotubes by rayleigh scattering. Science, 306(5701):1540-1543, 2004.
    [38] J. C. Slater. Electrons in perturbed periodic lattices. Phys. Rev., 76(11):1592-1601, 1949.
    [39] H. Stahl, J. Appenzeller, R. Martel, Ph. Avouris, and B. Lengeler. Intertube coupling in ropes of single-wall carbon nanotubes. Phys. Rev. Lett., 85(24):5186, 2000.
    [40] W. S. Su, T. C. Leung, Bin Li, and C. T. Chan. Work function of small radius carbon nanotubes and their bundles. Appl. Phys. Lett., 90(16):163103-3, 2007.
    [41] Agnes Szabados, Laszlo P. Biro, and Peter R. Surjan. Intertube interactions in carbon nanotube bundles. Phys. Rev. B, 73(19):195404, 2006.
    [42] Andreas Thess, Roland Lee, Pavel Nikolaev, Hongjie Dai, Pierre Petit, Jerome Robert, Chunhui Xu, Young Hee Lee, Seong Gon Kim, Andrew G. Rinzler, Daniel T. Colbert, Gustavo E. Scuseria, David Tomanek, John E. Fischer, and Richard E. Smalley. Crystalline ropes of metallic carbon nanotubes. Science, 273(5274):483-487, 1996.
    [43] David Tomanek and Steven G. Louie. First-principles calculation of highly asymmetric structure in scanning-tunneling-microscopy images of graphite. Phys. Rev. B, 37(14):8327, May 1988.
    [44] Feng Wang, Matthew Y. Sfeir, Limin Huang, X. M. Henry Huang, Yang Wu, Jaehee Kim, James Hone, Stephen O'Brien, Louis E. Brus, and Tony F. Heinz. Interactions between individual carbon nanotubes studied by rayleigh scattering spectroscopy. Phys. Rev. Lett., 96(16):167401-4, 2006.
    [45] Gregory H. Wannier. The structure of electronic excitation levels in insulating crystals. Phys. Rev., 52(3):191-197, 1937.
    [46] C. T. White, D. H. Robertson, and J. W. Mintmire. Helical and rotational symmetries of nanoscale graphitic tubules. Phys. Rev. B, 47(9):5485, 1993.
    [47] H. Yorikawa and S. Muramatsu. Energy gaps of semiconducting nanotubules. Phys. Rev. B, 52(4):2723, 1995.

    下載圖示 校內:立即公開
    校外:2009-07-27公開
    QR CODE