簡易檢索 / 詳目顯示

研究生: 余思緯
Yu, Suz-wei
論文名稱: 滾珠螺桿系統螺帽熱分析
The Thermal Analysis of Nuts in Ball Screw Systems
指導教授: 李旺龍
Li, Wang-long
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 101
中文關鍵詞: 工作溫度黏溫效應有限元素法熱分析模型滾珠螺桿
外文關鍵詞: Model of Analytic Heat Source, Finite Element Method, Working Temperature, Ball Screws
相關次數: 點閱:65下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱變形是影響定位精度誤差之主要來源,其中潤滑油的工作溫度也將影響油膜是否失效及後續的溫度是否會持續上升,【第一部分】針對含潤滑效應的滾珠螺桿,藉由滾珠螺桿運動學之理論分析,求解滾珠的滾動及滑動速率去建構合理的熱源模型;特別考慮潤滑劑之黏溫效應,將此加入疊代流程之中,完成螺帽整體之熱分析模型;【第二部分】藉由三個操作條件之溫度量測,將此與模擬資料庫作最小均方根誤差,找出軌道等效熱對流係數之預測曲線,並搭配第一部分之熱分析模型,進而預測不同螺桿轉速下之螺帽溫度分佈。

    【第一部分】為了增加滾珠螺桿系統之定位精度與整體剛性,會以增加預負荷來達成目的;但是過大的預負荷會造成摩擦力上升,並且導致溫度之攀升,造成的熱變形反而成為精度誤差之主要來源。因此本文以有限元素法(FEM)針對填充潤滑劑之螺帽,進行探討其熱分析。有別於其它與溫度相關之研究,本文藉由滾珠螺桿運動學之理論分析,推導出平均熱通量、平均接觸帶…等模擬參數,以建構螺帽軌道內的熱源模型,並且考慮潤滑劑之黏溫效應,加入疊代流程之中,建立起螺帽的整體熱分析模型。

    【第二部分】潤滑油對於工作溫度非常敏感,工作溫度也由於不同操作條件及潤滑條件而有所不同。因此本文在螺帽上鑽孔 (僅離螺帽牙溝頂端約0.56 mm)埋入熱電偶,再以銀粉填滿孔洞,以量測螺帽內部之「工作溫度」。藉由螺帽之實際量測溫度輔以第一部分熱傳導分佈之數值模擬分析模型,利用最小均方根誤差之方法,找出隨不同轉速變化下的軌道熱對流係數之預測曲線,因此藉由第一部分之熱分析模型與對流係數之預測曲線,即可預測不同轉速下之螺帽溫度分佈。

    Most of the positioning errors of ball screws come from thermal deformation. The working temperature of the lubricant renders the lubricant film ineffective, and the temperature would continue to rise. This master thesis (1st part) focuses on lubricating ball screws to study the thermal distribution of nuts through an appropriate heat analyzing model. The heat source model derived from sliding and rolling velocities of a ball’s motion would be the first time such a heat source generated from friction is modeled under lubricating conditions of kinematics. Specifically, we consider the relationship between the temperature and viscosity of lubricant, and include it in our simulated flow chart so as to construct a complete thermal analytic model of nuts. In the second part, we measure the temperature from only three operating conditions and take the root mean square error method with the experimental results and the thermal analyzing model from the first part. According to procedure, we can find the predicting curve of the convection coefficient on the groove, and use it in conjunction with the thermal analyzing model to forecast the temperature distribution of nuts at other revolution speeds.

    【1st Part】 A preload was added to improve the rigidity and position accuracy of the ball screws. However, more preload will induce increased friction between moving and stationary elements as well as drastic temperature rise. This results in thermal deformation, one of the major accuracy errors of ball screws. In this thesis, we used FEM to construct a thermal analyzing model of nuts under lubricating conditions. The distinguishing point of this thesis is modeling the heat source using kinematic theory, such as average heat flux, average contact band, etc. The appropriate heat source boundary conditions for constructing a heat source model were derived from sliding and rolling velocities of moving balls. The thermal distribution of the nuts would be obtained from the FEM analysis with appropriate boundary conditions. We then considered the relation between the lubricant’s temperature and viscosity, and included it in our simulated flow chart to build a complete thermal analytic model of nuts.

    【2nd Part】The lubricant, especially it viscosity, is very sensitive to the ball screws’ working temperature. The operating and lubricating conditions affect the working temperature rise as well. Therefore, we measured the temperature inside the nuts by embedding six thermocouples in drilled holes filled with silver powder. Using the root mean square error method along with the heat analyzing model and experimental results, we can identify the predicting curve of the convection coefficient on the groove with varying revolution speeds. We can thus forecast the temperature of nuts under other speeds after only measuring three operating temperatures.

    中文摘要 Ⅰ 英文摘要 II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 X 符號總表 XIII 第一章 緒論 1 1.1 影響滾珠螺桿精度之因素 3 1.2 文獻回顧 6 1.3 研究動機 8 1.4 研究目的 8 1.5 論文架構 10 第二章 理論分析 11 2.1 移動熱源 11 2.2 軌道熱對流的環境溫度 12 2.3 滾珠接觸帶 15 2.3.1 真實接觸角 16 2.3.2 考慮加減速效應 21 2.4 平均熱通量 24 2.4.1 考慮加減速效應 26 2.4.2 面積因子 31 2.4.3 能量分率 32 2.5 平均帶狀邊界 34 2.5.1 黏度效應 37 2.6 平均帶狀邊界推導流程 40 第三章 螺帽熱分析 43 3.1 統御域方程 43 3.2 邊界條件 45 3.3 模擬疊代流程 50 3.4 結果與討論 55 第四章 實驗 61 4.1 實驗目的 61 4.2 實驗規劃 61 4.2.1 量測位置 61 4.2.2 實驗參數 64 4.3 實驗機台 65 4.4 實驗步驟 67 4.5 實驗結果 68 第五章 溫度預測 73 5.1 等效對流係數 73 5.1.1 最小均方根誤差 73 5.1.2 預測等效對流係數曲線 75 5.2 預測溫度 78 5.3 整體流程 79 5.4 結果與討論 81 第六章 結論 91 第七章 未來展望 93 參考文獻 94 附錄I 判斷橢圓接觸長短軸 98 自述 101

    1. 盧素涵,我國滾珠螺桿市場現況(上),經濟部技術處ITIS產業評析專欄,經濟部產業技術資訊服務推廣計畫。
    2. HIWIN Technology Company, HIWIN Ballscrews Technical Information, Tanchung, Taiwan, 2006.
    3. 滾珠螺桿進出口貿易統計,國際貿易局,中華民國經濟部工業局。
    4. Ro, P. I. and Hubbel, P. I., "Model Reference Adaptive Control of Dual-mode Micro/macro Dynamics of Ball Screws for Nano-meter Motion," ASME Journal of Dynamic Systems, Measurement and Control, Vol. 115, No. 1, pp. 103-108. 1993.
    5. Kim, S.K., Cho, D.W., "Real-time Estimation of Temperature Distribution in A Ball-screw System," International Journal of Machine Tools and Manufacture, Vol.37, No.4, pp. 451-464, 1997.
    6. Weule, H., Golz, H. U., "Preload-control in Ball Screw – A New Approach for Machine Tool Building," Annals of the CIRP, Vol. 40, pp. 383-386. 1991.
    7. Nakashima, K., and Takafuji, K., "Stiffness of A Pre-loaded Ball Screw," 日本機械學會論文集, Vol. 53, No. 492, pp. 1898-1905. 1987.
    8. Yun, W. S., Kim, S. K., and Cho, D. W., "Thermal Error Analysis for a CNC Lathe Feed Drive System," International Journal of Machine Tools and Manufacture, Vol. 39, No. 7, pp 1087-1101. 1999.
    9. Rudnick, L. R., Lubricant Additives: Chemistry and Applications, CRC Press, New York, 2003.
    10. Lin, M. C., Ravani, B., and Velinsky, S. A., "Kinematics of the Ball Screw Mechanism," ASME Journal of Mechanical Design, Vol. 116, pp. 849-855, 1994.
    11. Lin, M. C., Ravani, B., and Velinsky, S. A., "Design of the Ball Screw Mechanism for Optimal Efficiency," ASME Journal of Mechanical Design, Vol. 116, pp. 856-861, 1994.
    12. Wei C. C., Lin J. F., "Kinematic Analysis of The Ball Screw Mechanism Considering Variable Contact Angles and Elastic Deformations," Transactions of ASME, Journal of Mechanical Design, Vol. 125, No. 4, pp. 717-733, 2003.
    13. 陳世昌,工具機高速進給之最近趨勢,機械工業雜誌,1997。
    14. Otsuka, J., Fukada, S., and Obuchi, N., "Study of Thermal Expansion of Ball Screw," Bulletin of the Japan Society of Precision Engineering," Vol. 17, No. 4, pp. 273-274 , 1983.
    15. Otsuka, J., Fukada, S., and Obuchi, N., "Thermal Expansion of Ball Screw and Its Theoretical Analysis," 4th International Power Transmission and Gearing Conference, No. 84, pp. 1-6, 1984.
    16. Huang, S. C., "Analysis of a Model to Forecast Thermal Deformation of Ball Screw Feed Drive Systems," International Journal of Machine Tools and Manufacture, Vol. 35, No. 8, pp.1099-1104, 1995.
    17. 廖子恩,滾珠螺桿溫昇熱變位量測之研究,國立中正大學機械研究所碩士論文,1999。
    18. Freeman, J.M., White, A.J., and Ford, D.G., "Ball-screw Thermal Errors - A Finite Element Simulation for On-line Estimation," Laser Metrology and Machine Performance V, pp. 269-278, 2001.
    19. Horejs, O., "Thermo-Mechanical Model of Ball Screw With Non-Steady Heat Sources," Thermal Issues in Emerging Technologies, ThETA1, pp. 133-137, 2007.
    20. Kodera, T., Yokoyama, K., Miyaguchi, K. et al., "Real-time Estimation of Ball-screw Thermal Elongation Based upon Temperature Distribution of Ball-screw," JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol. 47, No. 4, pp. 1175-1181, 2004.
    21. Heisel, U., Koscsak, G., and Stehle, T., "Thermography-based Investigation into Thermally Induced Positioning Errors of Feed Drives by Example of A Ball Screw," CIRP Annals - Manufacturing Technology, Vol. 55, No. 1, pp. 423-426, 2006.
    22. Johnson, K. L., Contact Mechanics, Cambridge University Press, London, 1985.
    23. Jaeger, J. C., "Moving Source of Heat and the Temperature at Sliding Contacts," Proceedings of the Royal Society, NSW 76, pp. 203-224, 1942.
    24. Carslaw, H. S., and Jaeger, J. C., "Conduction of Heat in Solids," Conduction of Heat in Solids," The Second Edit., Oxford University Press, Oxford, 1959.
    25. Ju, Y., Farris, T. N., Chandrasekar, S., "Theoretical Analysis of Heat Partition and Temperatures in Grinding," Journal of Tribology, Vol. 120, pp.789-794, 1988.
    26. Kuo, W. L., Lin, J. F., "General Temperature Rise Solution for a Moving Plane Heat Source Problem in Surface Grinding," The International Journal of Advanced Manufacturing Technology, Vol. 31, No. 3-4, pp. 268-277, 2006.
    27. Mizuho N., "Maintaining Ball Screw Precision," Machine Design, Vol. 51, No. 8, pp. 105-107, 1979.
    28. Blok, H., "Theoretical Study of Temperature Rise at Surface of Actual Contact under Oiliness Lubricating Conditions," In: Proceedings of the Institute of Mechanical Engineers General Discussion of Lubrication, Vol. 2, London: Institute of Mechanical Engineers, pp. 222–35, 1937.
    29. Archard, J. F., The Temperature of Rubbing Surface, Wear, Vol. 2, pp. 438-455, 1958.
    30. Sepehr Redstar CANADA Ltd., Base Oil Information, Canada.
    31. Cook, R. D., "Concepts and Applications of Finite Element Analysis," John Wiley & Sons, New York, p. 93-94, 1981.
    32. Zahavi, E., "The Finite Element Method in Machine Design," Prentice-Hall International Ed., p. 30, 1992.
    33. Incropera, P. F., Dewitt, P. D., "Introduction to Heat Transfer," John Wiley & Sons, New York, p. 52-62, 1996.
    34. Kobus, C. J., Shumway, G., "An Experimental Investigation into Impinging Forced Convection Heat Transfer from Stationary Isothermal Circular Disks," International Journal of Heat and Mass Transfer, Vol. 49, pp. 411-414, 2006.
    35. Degroot, M. H., Probability and Statistics, Addison-Wesley, New York, 1980.
    36. 金學松,輪軌摩擦學,中國鐵道出版社,北京,2004。

    下載圖示 校內:2011-08-12公開
    校外:2011-08-12公開
    QR CODE