簡易檢索 / 詳目顯示

研究生: 侯佳妏
Hou, Chia-Wen
論文名稱: 具定扭力輸出之接頭機構
Joint Mechanisms with Constant-Torque Outputs
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 92
中文關鍵詞: 定扭力接頭機構撓性接頭形狀最佳化零勁度靜平衡接頭扭力平衡系統
外文關鍵詞: Constant-torque joint mechanism, compliant joint, shape optimization, zero stiffness, statically balancing joint, torque balancing mechanism
相關次數: 點閱:91下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當撓性接頭在一定範圍的輸入角位移下,其輸出扭力不隨角位移而改變,使接頭之勁度幾乎為零時,我們稱此撓性接頭為定扭力接頭。此新型接頭目前尚未在任何文獻中被探討。本文之目標為發展具定扭力輸出之接頭機構,並將此機構應用於各式需扭力平衡之系統中。如裝置於人體之腳關節,可在蹲下時將位能儲存於定扭力機構中,同時平衡人體重量,起身時再藉由撓性體的彈性回復作用,達到省力的效果;或作為復健裝置,使患者的關節在活動角度範圍內,皆受到相同的阻力;透過兩個定扭力接頭互相平衡,可使接頭於旋轉區間處於一靜力平衡狀態,克服撓性機構之彈性回復行為,達到類似軸承之零勁度特性;將此機構應用於動態平衡,則能夠降低馬達在低速運轉時之轉速漣漪。本文首先提出各式定扭力機構構型,並採用形狀最佳化方法來設計定扭力接頭機構,接著分別以模擬及實驗驗證其性能,並探討不同材料對輸出定扭力特性的影響。相較於主動式扭力控制系統,使用被動式定扭力機構不需電源供應,亦不需使用感測器來做回授控制,其反應速度快,可提昇系統之可靠度,且具有結構簡單、製造容易及可微小化之優點,能廣泛的應用在各種尺寸之環境。

    This research presents a type of functional joint mechanisms with constant-torque outputs. Unlike torsional springs the torque of which increase with increasing rotation, a constant-torque joint mechanism (CTM) provides a nearly constant torque during a specific rotation interval. Instead of using sensorized control, CTMs passively maintain a constant torque level. Potential applications include dynamic and static balancing of machines, human joint rehabilitative device, and human mobility assisting device. To meet practical needs, a CTM should have a large constant-torque region with sufficient flatness. We propose lumped compliance models and distributed compliance models as the two perspectives to design a CTM. For both models, design formulations are given with results discussed and compared. The prototypes of using the distributed compliance models are further verified by comparing with finite element methods. Effects of modeling, dimension, and material variations on the constant-torque properties are investigated. Guidelines are given to design CTMs of various sizes and torque magnitude. Illustrated experiments study the torque to rotation curves of using different materials. Their resistances to hysteresis and stress relaxation are compared. The proposed CTMs are further investigated in two applications: statically balancing joints and torque balancing mechanisms. Since the CTMs are compact, we expect them to fit various scales of applications that requires static or dynamic constant-torque outputs.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 X 符號表 XV 第一章 緒論 1 1.1 撓性接頭介紹與文獻回顧 1 1.2 具功能性之撓性接頭介紹 4 1.3 研究動機與目標 6 1.4 論文架構 9 第二章 集總式撓性定扭力機構 10 2.1 前言 10 2.2 集總式定扭力機構 10 2.3 集總式定扭力機構之模擬 13 第三章 均佈式撓性定扭力機構 17 3.1 前言 17 3.2 定扭力機構最佳化設計 17 3.2.1 拓樸構型與形狀參數化 17 3.2.2 定扭力機構最佳化(一階形狀函數之撓性桿) 18 3.2.3 定扭力機構最佳化(弧形與直線形撓性桿) 24 3.3 有限元素法驗證 29 3.3.1 實體建模 29 3.3.2 有限元素法分析 30 3.4 實驗驗證 35 3.4.1 實驗配置 35 3.4.2 定扭力實驗 36 3.4.3 彈性遲滯及應力鬆弛實驗 40 3.5 可調式定扭力機構 44 3.5.1 雙穩態撓性桿之最佳化設計 45 3.5.2 線性撓性桿之最佳化設計 48 第四章 靜平衡撓性接頭設計 53 4.1 前言 53 4.2 靜平衡撓性接頭 54 4.2.1 靜平衡撓性機構文獻回顧 54 4.2.2 靜平衡撓性接頭之設計原理 56 4.3 靜平衡撓性接頭之分析 57 4.3.1 GMSM與有限元素法驗證 57 4.3.2 離軸向勁度分析 59 第五章 定轉速輸出之旋轉系統 61 5.1 前言 61 5.2 定扭力旋轉系統之設計 63 5.2.1 旋轉系統之動態模型 63 5.2.2 動態模擬結果 64 5.3 設計參數之影響 68 5.3.1 轉子ㄧ慣量(J1)的影響 68 5.3.2 轉子二慣量(J2)的影響 69 5.3.3 輸入扭力振幅(Tamp)的影響 71 5.3.4 平均輸入扭力(Tave)的影響 72 5.3.5 外在負載(TL)的影響 74 5.3.6 阻尼係數(C)的影響 75 第六章 結論與未來工作 78 6.1 結論 78 6.2 未來工作 79 參考文獻 82 附錄A 撓性機構數學模型 87 A.1 撓性桿件形狀函數 87 A.2 撓性桿件變形分析 88 A.3 撓性旋轉機構之邊界條件 90 著作權 92

    [1] B. P. Trease, Y. M. Moon, and S. Kota, 2005, "Design of Large-Displacement Compliant Joints," ASME Journal of Mechanical Design, 127(4), pp. 788-798.
    [2] J. M. Paros and L. Weisbord, 1965, "How to Design Flexure Joint," Machine Design, pp. 151-156.
    [3] L. L. Howell, 2001, "Compliant Mechanism," John Wiley & Sons, New York.
    [4] A. Kyusojin and D. Sagawa, 1988, "Development of Linear and Rotary Movement Mechanism by Using Flexible Strips," Bull. Jpn. Soc. Precis. Eng., 22(4), pp. 309-314.
    [5] F. Bona and S. Zelenika, 1994, "Precision Positioning Devices Based on Elastic Elements: Mathematical Modeling and Interferometric Characterization,” Seminar on Handling and Assembly of Microparts, Vienna, Austria.
    [6] Riverhawk Flexural Pivots Company, 2012, "Free-Flex® Pivot," New York, US, Available: http://www.flexpivots.com/
    [7] M. Goldfarb and J. Speich, 1999, "A Well-Behaved Revolute Flexure Joint for Compliant Mechanism Design," ASME Journal of Mechanical Design, 121(3), pp. 424-429.
    [8] S. Smith, 2000, "Flexures: Elements of Elastic Mechanisms," Taylor & Francis, London, England.
    [9] http://www.csem.ch/docs/show.aspx/7310/docname/e_211_HAFHA_ESMATS_2005_paper.pdf
    [10] R. Luharuka and P. J. Hesketh, 2006, "Design of Fully Compliant, In-Plane Rotary, Bistable Micromechanisms for MEMS Applications," Sensors and Actuators A: Physical, 134, pp. 231-238.
    [11] N. D. Masters and L. L. Howell, 2003, "A Self-Retracting Fully Compliant Bistable Micromechanism," IEEE Journal of Microelectromechanical Systems, 12(3), pp. 273-280.
    [12] A. B. Mackay, D. G. Smith, S. P. Magleby, B. D. Jensen, and L. L. Howell, 2012, "Metrics for Evaluation and Design of Large-Displacement Linear-Motion Compliant Mechanisms," ASME Journal of Mechanical Design, 134, 011008.
    [13] Y. S. Oh and S. Kota, 2009, "Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms," ASME Journal of Mechanical Design, 131, 021002.
    [14] S. Wolf and G. Hirzinger, 2008, "A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation," IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 1741-1746.
    [15] J. Choi, S. Hong, W. Lee, and S. Kang, 2009, "Variable Stiffness Joint using Leaf Springs for Robot Manipulators," IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 4363-4368.
    [16] J.-J. Park, B.-S. Kim, J.-B. Song, and H.-S. Kim, 2007, "Safe Link Mechanism based on Passive Compliance for Safe Human-Robot Collision," IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 1152-1157.
    [17] J.-J. Park, Y.-J. Lee, J.-B. Song, and H.-S. Kim, 2008,"Safe Joint Mechanism based on Nonlinear Stiffness for Safe Human-Robot Collision," IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 2177-2182.
    [18] Y.-H. Chen and C.-C. Lan, 2012, "An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations," ASME Journal of Mechanical Design, 134, 031005.
    [19] Hocoma medical technology company, 2011, "Armeo® Spring," Zurich, Switzerland, Available: http://www.hocoma.com/en/products/armeo/armeo-spring/
    [20] N. Schmit and M. Okada, 2011, "Synthesis of a Non-Circular Cable Spool to Realize a Nonlinear Rotational Spring," IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, pp. 762-767.
    [21] N. Schmit and M. Okada, 2012, "Simultaneous Optimization of Robot Trajectory and Nonlinear Springs to Minimize Actuator Torque," IEEE International Conference on Robotics and Automation, Saint Paul, Minnesota, USA, pp. 2806-2811.
    [22] G. Endo, H. Yamada, A. Yajima, M. Ogata, and S. Hirose, 2010, "A Passive Weight Compensation Mechanism with a Non-Circular Pully and a Spring," IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, pp. 3843-3848.
    [23] A. Kipnis and Y. Belman, 1995, "Constant Torque Range-of-Motion Splint," US Patent, 5399159.
    [24] L. A. Van Dyne, 1997, "Prosthetic Joint with Dynamic Torque Compensator," US Patent, 5624390.
    [25] L. L. Howell and S. P. Magleby, 2006, "Substantially Constant-force Exercise Machine," US Patent, 7060012, B2.
    [26] P. Alabuzhev, A. Gritchin, L. Kim, G. Migirenko, V. Chon, and P. Stepanov, 1989, "Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness," Hemisphere Publishing, New York.
    [27] M. B. Biggs, 2008, "Nonlinear Optimization with Engineering Applications," Springer, UK, pp. 197-210.
    [28] Y.-J. Cheng, 2009, "Shape Design of Compliant Mechanisms Using Bezier Curves," M.S. Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.
    [29] ANSYS, Inc., 2011, "MultiZone Method Control, Setting the Method Control for Solid Bodies, ANSYS 12.1 Help".
    [30] ANSYS, Inc., 2011, "Solid186, Element Library, Element Reference, ANSYS 12.1 Help".
    [31] Hwa Yu Plastic Co., Ltd., 2012, "PEEK," Taichung, Taiwan, Available: http://www.hwayu.com.tw/properties.php
    [32] Kao-Cheng Engineering Plastic Resin Co., Ltd., 2012, "PEEK-GF30," Kaohsiung, Taiwan, Available: http://www.kcm.com.tw/index.php
    [33] Y.-C. Lee, C.-C. Lan, C.-Y. Chu, C.-M. Lai, and Y.-J. Chen, 2011, "A Pan-Tilt Orienting Mechanism with Parallel Axes of Flexural Actuation," IEEE/ASME International Conference on Mechatronic, 99, 06199984.
    [34] G. Chen and S. Zhang, 2011, "Fully-Compliant Statically-Balanced Mechanisms without Prestressing Assembly : Concepts and Case Studies," Mech. Sci., 2, pp. 169-174.
    [35] N. Tolou, V. A. Henneken, and J.L. Herder, 2010, "Statically Balanced Compliant Micro Mechanisms (SB-MEMS) : Concepts and Simulation," Proceedings of IDETC/CIE ASME, Montreal, Quebec, Canada, DETC2010-28406.
    [36] J. B. A. De Lange, M. Langelaar, and J. L. Herder, 2008, "Towards the Design of a Statically Balanced Compliant Laparoscopic Grasper using Topology Optimization," Proceedings of IDETC/CIE ASME, Brooklyn, New York, USA, DETC2008-49794.
    [37] N. Tolou and J. L. Herder, 2009, "Concept and Modeling of a Statically Balanced Compliant Laparoscopic Grasper," Proceedings of ASME Design Engineering Technical Conference, MECH-86694.
    [38] K. Hoetmer, G. Woo, C. Kim, and J. L. Herder, 2010, "Negative Stiffness Building Blocks for Statically Balanced Compliant Mechanisms : Design and Testing," ASME Journal of Mechanisms and Robotics, 2, 041007.
    [39] F. M. Morsch and J. L. Herder, 2010, "Design of a Generic Zero Stiffness Compliant Joint," Proceedings of IDETC/CIE ASME, Montreal, Quebec, Canada, DETC2010-28351.
    [40] C.-C. Lan and C.-W. Cheng, 2010, "Modeling and Design of Air Vane Motors for Minimal Torque Ripples," IEEE/ASME Transactions on Mechatronics, pp. 1275-1280.
    [41] C.-C. Lan and K. M. Lee, 2006, "Generalized Shooting Method for Analyzing Compliant Mechanisms with Curved Members," ASME Journal of Mechanical Design, 128(4), pp. 765-775.
    [42] C.-C. Lan and Y. J. Cheng, 2008, "Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions," ASME Journal of Mechanical Design, 130, 072304.

    下載圖示 校內:2017-08-06公開
    校外:2017-08-06公開
    QR CODE