| 研究生: |
邱靖軒 Chiu, Ching-Hsuan |
|---|---|
| 論文名稱: |
基於有限元素分析之下顎All-on-4®植體配置最佳化與臨床醫師決策之比較 FEA-informed Optimization of Mandibular All-on-4® Implant Placement Compared with Clinical Decisions |
| 指導教授: |
林啟倫
Lin, Chi-Lun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | All-on-4® 、粒子點群法 、有限元素分析 、生物力學分析 、臨床比較 |
| 外文關鍵詞: | All-on-4®, Particle Swarm Optimization, Finite Element Analysis, Biomechanical Analysis, Clinical Comparison |
| 相關次數: | 點閱:5 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
口腔疾病為全球最常見的非傳染性疾病之一,其中約有3.1億人口全口缺牙患者。近年來,All-on-4®全口重建植牙技術廣泛應用於無牙患者之治療,其核心概念為於上下顎骨中植入四根植體並搭配支架與贋復物以完成固定式修復。然而,現今臨床上之植體配置與決策多仰賴醫師之個人經驗與主觀偏好,缺乏一套結合力學理論與客觀分析的植牙配置準則,易導致不穩定或高風險之放置結果,進而影響其長期穩定性與成功率。
本研究的目的為提出一套結合有限元素分析與最佳化方法之下顎All-on-4®植體配置決策支援系統,可應用於真實患者,以生物力學指標作為其目標函數進行植體配置最佳化。本研究收集了10位臨床患者之下顎骨錐狀射束電腦斷層掃描 資料以重建三維幾何模型,並匯入至有限元素分析軟體Abaqus進行力學模擬與分析計算植體周邊平均應力,並透過粒子群演算法,反覆迭代最小化該應力指標。同時,本研究招募了10位專科醫師與10位實習醫師對相同10位患者進行植體配置,進行組內與組間之可行性與一致性分析,並探討醫師決策與基於生物力學的電腦決策之間的差異。
相較於現行All-on-4®概念的植牙準則與現行之植牙配置建議,本研究之最佳化系統在10個臨床個案中降低了平均應力達52.19%,顯著其可針對個人下顎幾何條件有效優化自訂之力學指標。與專科醫師和實習醫師的植牙配置相比,本系統所得之植體最佳配置在平均應力上分別低了50.11%和44.75%。醫師的植體配置結果顯示,實習醫師組的可行決策僅有64%,而專科醫師組的決策雖皆為可行,但具有主觀放置偏好的現象。
本研究提出了可應用於真實患者之下顎All-on-4®植體配置最佳化系統,可作為醫師的決策支援工具,在確保可行性的前提下,提供基於生物力學的最佳植體配置參考。
Edentulism, affecting over 310 million people worldwide, presents a significant public health concern. The All-on-4® implant technique has emerged as a widely adopted solution for full-arch rehabilitation. However, clinical decisions for implant placement still largely depend on personal experience, lacking standardized biomechanical guidelines, which may compromise long-term stability and success.
This study introduces a decision-support system that combines Finite Element Analysis (FEA) and Particle Swarm Optimization (PSO) to optimize mandibular implant configurations based on biomechanical performance, specifically minimizing peri-implant stress. Using CT data from 10 clinical patients, 3D mandibular models were reconstructed for FEA, and PSO was applied to determine optimal implant positions, sizes, and angles. These results were compared with implant plans from 10 specialists and 10 interns.
Compared with traditional All-on-4® placement rules and expert decisions, the proposed system achieved a 52.19% reduction in average peri-implant stress. When compared specifically to the configurations made by specialists and interns, the system's optimized plans reduced stress by 50.11% and 44.75%, respectively. While all specialist-designed placements were feasible, they exhibited notable subjective biases. Intern-designed plans had a lower feasibility rate of 64%.
This study demonstrates the clinical potential of FEA-based optimization to support more consistent, evidence-based implant planning, especially for less experienced clinicians.
World Health Organization. (2022). Global oral health status report: Towards universal health coverage for oral health by 2030. World Health Organization.
Harada, T.; Miyagami, T.; Kunitomo, K.; Shimizu, T. Clinical Decision Support Systems for Diagnosis in Primary Care: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 8435.
Singh, H.; Meyer, A.N.D.; Thomas, E.J. The Frequency of Diagnostic Errors in Outpatient Care: Estimations from Three Large Observational Studies Involving US Adult Populations. BMJ Qual. Saf. 2014, 23, 727–731
Singh, H.; Giardina, T.D.; Meyer, A.N.D.; Forjuoh, S.N.; Reis, M.D.; Thomas, E.J. Types and origins of diagnostic errors in primary care settings. JAMA Int. Med. 2013, 173, 418–425.
Panesar, S.S.; deSilva, D.; Carson-Stevens, A.; Cresswell, K.M.; Salvilla, S.A.; Slight, S.P.; Javad, S.; Netuveli, G.; Larizgoitia, I.; Donaldson, L.J.; et al. How Safe Is Primary Care? A Systematic Review. BMJ Qual. Saf. 2016, 25, 544–553.
Farmer, N. An Update and Further Testing of a Knowledge-Based Diagnostic Clinical Decision Support System for Musculoskeletal Disorders of the Shoulder for Use in a Primary Care Setting. J. Eval. Clin. Pract. 2014, 20, 589–595.
T. Liu, Z. X. Mu, T. Yu, C. Wang, and Y. D. Huang, "Biomechanical comparison of implant inclinations and load times with the all-on-4 treatment concept: a three-dimensional finite element analysis," Computer Methods in Biomechanics and Biomedical Engineering, vol. 22, no. 6, pp. 585-594, Apr 2019.
Gumrukcu, Z., Y.T. Korkmaz, and F.M. Korkmaz, Biomechanical evaluation of implant-supported prosthesis with various tilting implant angles and bone types in atrophic maxilla: A finite element study. Computers in Biology and Medicine, 2017. 86: p. 47-54
Horita, S., et al., Biomechanical analysis of immediately loaded implants according to the "All-on-Four" concept. Journal of Prosthodontic Research, 2017. 61(2): p. 123- 132
Ayali, A., et al., Biomechanical comparison of the All-on-4, M-4, and V-4 techniques in an atrophic maxilla: A 3D finite element analysis. Computers in Biology and Medicine, 2020. 123: p. 10
Almeida, E.O., et al., Tilted and Short Implants Supporting Fixed Prosthesis in an Atrophic Maxilla: A 3D-FEA Biomechanical Evaluation. Clinical Implant Dentistry and Related Research, 2015. 17: p. E332-E342
Yung-Chung Chen, Jia-Wei Lin, Kuan-Hsin Wang, Chi-Lun Lin, Real-time optimization of prosthetic design for complete arch implant-supported treatments using finite element-based machine learning,The Journal of Prosthetic Dentistry,2024.
Hopkins, D., Callary, S. A., & Solomon, L. B. (2024). Computational modeling of revision total hip arthroplasty involving acetabular defects: A systematic review. Journal of Orthopaedic Research.
Maló P, Rangert B, Nobre M. "All-on-Four" immediate-function concept with Brånemark System implants for completely edentulous mandibles: a retrospective clinical study. Clin Implant Dent Relat Res. 2003;5 Suppl 1:2-9.
Maló P, Rangert B, Nobre M. All-on-4 immediate-function concept with Brånemark System implants for completely edentulous maxillae: a 1-year retrospective clinical study. Clin Implant Dent Relat Res. 2005;7 Suppl 1:S88-94.
Maló P, de Araújo Nobre M, Lopes A, Francischone C, Rigolizzo M. "All-on-4" immediate-function concept for completely edentulous maxillae: a clinical report on the medium (3 years) and long-term (5 years) outcomes. Clin Implant Dent Relat Res. 2012 May;14 Suppl 1:e139-50.
Lopes, A., et al., The NobelGuide (R) All-on-4 (R) Treatment Concept for Rehabilitation of Edentulous Jaws: A Prospective Report on Medium- and Long-Term Outcomes. Clinical Implant Dentistry and Related Research, 2015. 17: p. E406-E416.
Malo, P., et al., The All-on-4 treatment concept for the rehabilitation of the completely edentulous mandible: A longitudinal study with 10 to 18 years of follow-up. Clinical Implant Dentistry and Related Research, 2019. 21(4): p. 565-577.
Himmlová L, Dostálová T, Kácovský A, Konvicková S. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent. 2004 Jan;91(1):20-5.
Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2003 May-Jun;18(3):357-68.
Bevilacqua M, Tealdo T, Pera F, Menini M, Mossolov A, Drago C, Pera P. Three-dimensional finite element analysis of load transmission using different implant inclinations and cantilever lengths. Int J Prosthodont. 2008 Nov-Dec;21(6):539-42.
Gupta, Y., Iyer, R., Dommeti, V. K., Nutu, E., Rana, M., Merdji, A., … Roy, S. (2020). Design of dental implant using design of experiment and topology optimization: A finite element analysis study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235(2), 157–166.
李祈緯,”結合演化演算法與拓樸最佳化於All-on-4 全口速定植牙之贋復設計”,國立成功大學機械工程學系碩士論文,pp. 1-83, 2021.
Tada, S., Stegaroiu, R., Kitamura, E., Miyakawa, O., & Kusakari, H. (2003). Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis [Article]. The International journal of oral & maxillofacial implants, 18(3), 357-368.
Lee, J. S., & Lim, Y. J. (2013). Three-dimensional numerical simulation of stress induced by different lengths of osseointegrated implants in the anterior maxilla. Computer Methods in Biomechanics and Biomedical Engineering, 16(11), 1143-1149.
Ishak, M. I., Shafi, A. A., Kadir, M. R. A., & Sulaiman, E. (2017). Effect of Ferrule Height and Post Length on Mechanical Stress and Displacement of Endodontically Treated Maxillary Central Incisor: A Finite Element Analysis. Journal of Medical and Biological Engineering, 37(3), 336-344.
Araki, H., Nakano, T., Ono, S., & Yatani, H. (2020). Three-dimensional finite element analysis of extra short implants focusing on implant designs and materials. International journal of implant dentistry, 6(1), Article 5.
Benevides, F., Cimoes, R., Vajgel, A., Wilmersdorf, R. B., & Vajgel, B. D. F. (2021). Stress evaluation of different implant lengths on atrophic edentulous mandibles with fixed full-arch implant-supported prosthesis: a finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 24(4), 358-374.
de Oliveira Melo, J. M. F., Brito Willmersdorf, R., de Siqueira Lages, A., Vajgel Fernandes, A., Viana de Amorim, F. B., & Farias Vajgel, B. d. C. (2022). Evaluation of Stress and Fatigue on Different Implant Lengths in the Rehabilitation of Atrophic Mandibles with Full-Arch Fixed Prosthesis Using Finite Element Method. International Journal of Oral & Maxillofacial Implants, 37(5), 971-981.
Singh, R., Desai, S. R., & Manjunath, R. G. S. (2023). Influence of implant design and length on stress distribution in immediately loaded implants in posterior maxilla – A two-dimensional finite element analysis [Article]. Journal of Indian Society of Periodontology, 27(6), 600-606.
Tsai, M. H., Lee, C. H., Wu, A. Y. J., Lei, Y. N., Chen, H. S., & Wu, Y. L. (2024). A Biomechanical Evaluation of Distal Tilting Implants in All-on-Four Rehabilitation with Mild Mandibular Resorption: A Finite Element Analysis Study. MATERIALS, 17(22).
Rubo, J. H., & Souza, E. A. C. (2010). Finite-Element Analysis of Stress on Dental Implant Prosthesis. Clinical implant dentistry and related research, 12(2), 105-113.
Sotto-Maior, B. S., Mercuri, E. G. F., Senna, P. M., Assis, N., Francischone, C. E., & Cury, A. A. D. (2016). Evaluation of bone remodeling around single dental implants of different lengths: a mechanobiological numerical simulation and validation using clinical data. Computer Methods in Biomechanics and Biomedical Engineering, 19(7), 699-706.
Misch, C. E. (1999). Implant design considerations for the posterior regions of the mouth [Review]. Implant Dentistry, 8(4), 376-386.
Akça, K., & Iplikçioglu, H. (2001). Finite element stress analysis of the influence of staggered versus straight placement of dental implants. International Journal of Oral & Maxillofacial Implants, 16(5), 722-730.
Santiago, J. F., Pellizzer, E. P., Verri, F. R., & de Carvalho, P. S. P. (2013). Stress analysis in bone tissue around single implants with different diameters and veneering materials: A 3-D finite element study. Materials Science & Engineering C-materials for Biological Applications, 33(8), 4700-4714.
Cho, S. Y., Huh, Y. H., Park, C. J., & Cho, L. R. (2016). Three-Dimensional Finite Element Analysis of the Stress Distribution at the Internal Implant-Abutment Connection. International Journal of Periodontics & Restorative Dentistry, 36(3), E49-E58.
Hiroyoshi, M., Satoshi, Y., Tamaki, N., Yasufumi, Y., Satoshi, I., & Hirofumi, Y. (2016). Influence of Implant Length and Diameter, Bicortical Anchorage, and Sinus Augmentation on Bone Stress Distribution: Three-Dimensional Finite Element Analysis. International Journal of Oral & Maxillofacial Implants, 31(4), 793-793.
Unsal, G. S. (2020). Three-dimensional finite element analysis of different implant configurations in enlarged first molar areas [Article]. International Journal of Oral and Maxillofacial Implants, 35(4), 675-683.
Lee, H., Jo, M., & Noh, G. (2021). Biomechanical effects of dental implant diameter, connection type, and bone density on microgap formation and fatigue failure: A finite element analysis [Article]. Computer Methods and Programs in Biomedicine, 200.
Muangsisied, S., Chantarapanich, N., Veerasakul, M. S., & Inglam, S. (2021). Effect of Implant Diameter and Cortical Bone Thickness on Biomechanical Performance of Short Dental Implant-Supported Distal Cantilever: A Finite Element Study. Engineering Journal-Thailand, 25(2), 175-182.
Santana, L. C. L., Guastaldi, F. P. S., Idogava, H. T., Noritomi, P. Y., De Foggi, C. C., & Vaz, L. G. (2021). Mechanical Stress Analysis of Different Configurations of the All-on-4 Concept in Atrophic Mandible: A 3D Finite Element Study. International Journal of Oral & Maxillofacial Implants, 36(1), 75-85.
Zincir, Ö., & Parlar, A. (2021). Comparison of stresses in monoblock tilted implants and conventional angled multiunit abutment-implant connection systems in the all-on-four procedure [Article]. BMC oral health, 21(1), 646.
Zor, Z. F., Kilinç, Y., Erkmen, E., & Kurt, A. (2021). Evaluation of biomechanical effects of different implant thread designs and diameters on all-on-four concept. Journal of Osseointegration, 13(3), 101-108.
Lee, H., Jo, M., Sailer, I., & Noh, G. (2022). Effects of implant diameter, implant-abutment connection type, and bone density on the biomechanical stability of implant components and bone: A finite element analysis study. Journal of Prosthetic Dentistry, 128(4), 716-728.
Lin, C., Hu, H., Zhu, J., Rong, Q., & Tang, Z. (2022). Influence of different diameter reductions in the labial neck region on the stress distribution around custom‐made root‐analogue implants. European journal of oral sciences, 130(1), 1-10.
Sezer, T., Kilic, K., & Esim, E. (2022). Effect of Implant Diameter and Bruxism on Biomechanical Performance in Maxillary All-on-4 Treatment: A 3D Finite Element Analysis [Article]. International Journal of Oral and Maxillofacial Implants, 37(4), 709-721.
Patil, P. G., Seow, L. L., Uddanwadikar, R., Pau, A., & Ukey, P. D. (2024). Different implant diameters and their effect on stress distribution pattern in 2-implant mandibular overdentures: A 3D finite element analysis study. Journal of Prosthetic Dentistry, 131(4), 675-682.
Shen, Y. W., Huang, H. L., Hsu, J. T., & Fuh, L. J. (2024). Effects of diameters of implant and abutment screw on stress distribution within dental implant and alveolar bone: A threedimensional finite element analysis. Journal of dental sciences, 19(2), 1126-1134.
Anitua, E., & Orive, G. (2009). Finite Element Analysis of the Influence of the Offset Placement of an Implant-Supported Prosthesis on Bone Stress Distribution. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 89B(2), 275-281.
Skiedraite, I., Diliunas, S., & Varinauskas, V. (2023). A Study Case of Short Dental Implants Loading in the All-On-4? System on Fixed Dental Prostheses: A Finite Element Analysis. Mechanika, 29(2), 104-109.
Kang, N., Wu, Y. Y., Gong, P., Yue, L., & Ou, G. M. (2014). A study of force distribution of loading stresses on implant-bone interface on short implant length using 3-dimensional finite element analysis. Oral Surgery Oral Medicine Oral Pathology Oral Radiology, 118(5), 519-523.
Satoh, T., Maeda, Y., & Komiyama, Y. (2005). Biomechanical rationale for intentionally inclined implants in the posterior mandible using 3D finite element analysis. International Journal of Oral & Maxillofacial Implants, 20(4), 533-539.
Zampelis, A., Rangert, B., & Heijl, L. (2007). Tilting of splinted implants for improved prosthodontic support: a two-dimensional finite element analysis. Journal of Prosthetic Dentistry, 97, S35-43.
Bevilacqua, M., Tealdo, T., Pera, F., Menini, M., Mossolov, A., Drago, C., & Pera, P. (2008). Three-dimensional finite element analysis of load transmission using different implant inclinations and cantilever lengths. International Journal of Prosthodontics, 21(6), 539-542.
Casas, E. B. L., Ferreira, P. C., Cimini, C. A., Toledo, E. M., Barra, L., & Cruz, M. (2008). Comparative 3D finite element stress analysis of straight and angled wedge-shaped implant designs. International Journal of Oral & Maxillofacial Implants, 23(2), 215-225.
Bellini, C. M., Romeo, D., Galbusera, F., Agliardi, E., Pietrabissa, R., Zampelis, A., & Francetti, L. (2009). A finite element analysis of tilted versus nontilted implant configurations in the edentulous maxilla. International Journal of Prosthodontics, 22(2), 155-157.
Takahashi, T., Shimamura, I., & Sakurai, K. (2010). Influence of number and inclination angle of implants on stress distribution in mandibular cortical bone with All-on-4 Concept [Article]. Journal of prosthodontic research, 54(4), 179-184.
Bevilacqua, M., Tealdo, T., Menini, M., Pera, F., Mossolov, A., Drago, C., & Pera, P. (2011). The influence of cantilever length and implant inclination on stress distribution in maxillary implant-supported fixed dentures [Article]. Journal of Prosthetic Dentistry, 105(1), 5-13.
Kim, K. S., Kim, Y. L., Bae, J. M., & Cho, H. W. (2011). Biomechanical Comparison of Axial and Tilted Implants for Mandibular Full-Arch Fixed Prostheses. International Journal of Oral & Maxillofacial Implants, 26(5), 976-984.
Malhotra, A., Padmanabhan, T., Mohamed, K., Natarajan, S., & Elavia, U. (2012). Load transfer in tilted implants with varying cantilever lengths in an all-on-four situation. Australian Dental Journal, 57(4), 440-445.
Elsyad, M. A., Al-Mahdy, Y. F., Salloum, M. G., & Elsaih, E. A. (2013). The Effect of Cantilevered Bar Length on Strain Around Two Implants Supporting a Mandibular Overdenture. International Journal of Oral & Maxillofacial Implants, 28(3), E143-E150.
Pesqueira, A. A., Goiato, M. C., dos Santos, D. M., Nobrega, A. S., Haddad, M. F., Andreotti, A. M., & Moreno, A. (2013). Stress analysis in oral obturator prostheses over parallel and tilted implants: photoelastic imaging. Journal of Biomedical Optics, 18(10).
Balkaya, M. C. (2014). Investigation of Influence of Different Implant Size and Placement on Stress Distribution With 3-Dimensional Finite Element Analysis. Implant Dentistry, 23(6), 716-722.
Ebadian, B., Mosharraf, R., & Khodaeian, N. (2015). Finite Element Analysis of the Influence of Implant Inclination on Stress Distribution in Mandibular Overdentures. Journal of Oral Implantology, 41(3), 252-257.
Li, X. M., Cao, Z. Z., Qiu, X. Q., Tang, Z., Gong, L. L., & Wang, D. L. (2015). Does matching relation exist between the length and the tilting angle of terminal implants in the all-on-four protocol? stress distributions by 3D finite element analysis. Journal of Advanced Prosthodontics, 7(3), 240-248.
Choi, S. H., Kim, S. J., Lee, K. J., Sung, S. J., Chun, Y. S., & Hwang, C. J. (2016). Stress distributions in peri-miniscrew areas from cylindrical and tapered miniscrews inserted at different angles. Korean journal of orthodontics, 46(4), 189-198.
Lofaj, F., Kučera, J., Németh, D., & Minčík, J. (2018). Optimization of Tilted Implant Geometry for Stress Reduction in All-on-4 Treatment Concept: Finite Element Analysis Study [Article]. The International journal of oral & maxillofacial implants, 33(6), 1287-1295.
Ozan, O., & Kurtulmus-Yilmaz, S. (2018). Biomechanical Comparison of Different Implant Inclinations and Cantilever Lengths in All-on-4 Treatment Concept by Three-Dimensional Finite Element Analysis [Article]. The International journal of oral & maxillofacial implants, 33(1), 64-71.
Boukhlif, A., Merdji, A., Roy, S., Alkhaldi, H., Abu-Alshaikh, I., Della, N., Cristache, C. M., & Hillstrom, R. (2020). Effect of supporting implants inclination on stability of fixed partial denture: A finite element study. Proceedings of The Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 234(10), 1162-1171.
Huang, H. L., Lin, T. W., Tsai, H. L., Wu, Y. L., & Wu, A. Y. J. (2022). Biomechanical Effects of Bone Atrophy, Implant Design, and Vertical or Tilted of Posterior Implant on All-on-Four Concept Implantation: Finite Element Analysis [Article]. Journal of Medical and Biological Engineering, 42(4), 488-497.
Mosharraf, R., Abbasi, M., & Givehchian, P. (2022). The Effect of Abutment Angulation and Crown Material Compositions on Stress Distribution in 3-Unit Fixed Implant-Supported Prostheses: A Finite Element Analysis. International Journal of Dentistry, 2022.
Wang, Q., Zhang, Z. Z., Bai, S. Z., & Zhang, S. F. (2022). Biomechanical analysis of stress around the tilted implants with different cantilever lengths in all-on-4 concept. BMC oral health, 22(1), Article 469.
Zor, Z. F., Kilinc, Y., Erkmen, E., & Kurt, A. (2022). How do implant threads and diameters affect the all-on-four success? A 3D finite element analysis study. Technology and Health Care, 30(5), 1031-1042.
Chen, P., Zhang, J. G., Yao, J., Hu, F. L., Song, L., & Yu, Y. C. (2024). Effect of angled abutments in the posterior maxillary region on tilted implants: a 3D finite element analysis. Medical & Biological Engineering & Computing, 62(8), 2585-2597.
Ogawa, T., Dhaliwal, S., Naert, I., Mine, A., Kronstrom, M., Sasaki, K., & Duyck, J. (2010). Effect of Tilted and Short Distal Implants on Axial Forces and Bending Moments in Implants Supporting Fixed Dental Prostheses: An In Vitro Study. International Journal of Prosthodontics, 23(6), 566-573.
Del Fabbro, M., & Ceresoli, V. (2014). The fate of marginal bone around axial vs. tilted implants: A systematic review. European journal of oral implantology, 7, S171-S189.
Malchiodi, L., Moro, T., Cattina, D. P., Cucchi, A., Ghensi, P., & Nocini, P. F. (2018). Implant rehabilitation of the edentulous jaws: Does tilting of posterior implants at an angle greater than 45° affect bone resorption and implant success?: A retrospective study. Clinical implant dentistry and related research, 20(5), 867-874.
Mehta, S. P., Sutariya, P. V., Pathan, M. R., Upadhyay, H. H., Patel, S. R., & Kantharia, N. D. G. (2021). Clinical success between tilted and axial implants in edentulous maxilla: A systematic review and meta-analysis. Journal of Indian Prosthodontic Society, 21(3), 217-228.
Tabrizi, R., Pourdanesh, F., Zare, S., Daneste, H., & Zeini, N. (2013). Do Angulated Implants Increase the Amount of Bone Loss Around Implants in the Anterior Maxilla? Journal of Oral and Maxillofacial Surgery, 71(2), 272-277.
Cruz, M., Wassall, T., Toledo, E. M., Barra, L. P. D., & Cruz, S. (2009). Finite Element Stress Analysis of Dental Prostheses Supported by Straight and Angled Implants. International Journal of Oral & Maxillofacial Implants, 24(3), 391-403.
Ceddia, M., Romasco, T., Marchioli, G., Comuzzi, L., Cipollina, A., Piattelli, A., Lamberti, L., Di Pietro, N., & Trentadue, B. (2025). Finite Element Analysis of Implant Stability Quotient (ISQ) and Bone Stresses for Implant Inclinations of 0°, 15°, and 20°. Materials, 18(7), Article 1625.
Iplikçioglu, H., & Akça, K. (2002). Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone. Journal of Dentistry, 30(1), 41-46.
Petrie, C. S., & Williams, J. L. (2002). Shape Optimization of Dental Implant Designs Under Oblique Loading Using The p-Version Finite Element Method. Journal of Mechanics in Medicine and Biology, 2(3-4), 339-345.
Himmlová, L., Dostálová, T., Kácovsky, A., & Konvicková, S. (2004). Influence of implant length and diameter on stress distribution:: A finite element analysis. Journal of Prosthetic Dentistry, 91(1), 20-25.
Sun, Y., Kong, L., Liu, B., Hu, K., Li, D., & Song, L. (2007). Diameter and length double objectives robust analysis of cylinder dental implant [Article]. Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology, 25(4), 358-361.
Verri, F. R., Pellizzer, E. P., Rocha, E. P., & Pereira, J. A. (2007). Influence of length and diameter of implants associated with distal extension removable partial dentures [Article]. Implant Dentistry, 16(3), 270-280.
Baggi, L., Cappelloni, I., Di Girolamo, M., Maceri, F., & Vairo, G. (2008). The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. Journal of Prosthetic Dentistry, 100(6), 422-431.
Huang, H. L., Hsu, J. T., Fuh, L. J., Tu, M. G., Ko, C. C., & Shen, Y. W. (2008). Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: A non-linear finite element study. Journal of Dentistry, 36(6), 409-417.
Kong, L., Sun, Y., Hu, K., Li, D., Hou, R., Yang, J., & Liu, B. (2008). Bivariate evaluation of cylinder implant diameter and length: A three-dimensional finite element analysis [Article]. Journal of Prosthodontics, 17(4), 286-293.
Li, T., Kong, L., Wang, Y., Hu, K., Song, L., Liu, B., Li, D., Shao, J., & Ding, Y. (2009). Selection of optimal dental implant diameter and length in type IV bone: a three-dimensional finite element analysis [Article]. International Journal of Oral and Maxillofacial Surgery, 38(10), 1077-1083.
Ding, X., Liao, S. H., Zhu, X. H., Zhang, X. H., & Zhang, L. (2009). Effect of diameter and length on stress distribution of the alveolar crest around immediate loading implants [Article]. Clinical implant dentistry and related research, 11(4), 279-287.
Guan, H., van Staden, R., Loo, Y., Johnson, N., Ivanovski, S., & Meredith, N. (2009). Influence of bone and dental implant parameters on stress distribution in the mandible: a finite element study. International Journal of Oral & Maxillofacial Implants, 24(5), 866-876.
Kong, L., Gu, Z., Li, T., Wu, J., Hu, K., Liu, Y., Zhou, H., & Liu, B. (2009). Biomechanical optimization of implant diameter and length for immediate loading: a nonlinear finite element analysis. International Journal of Prosthodontics, 22(6), 607-615.
Anitua, E., Tapia, R., Luzuriaga, F., & Orive, G. (2010). Influence of implant length, diameter, and geometry on stress distribution: a finite element analysis. International Journal of Periodontics & Restorative Dentistry, 30(1), 89-95.
Guan, H., van Staden, R., Loo, Y., Johnson, N., Ivanovski, S., & Meredith, N. (2010). Evaluation of multiple implant-bone parameters on stress characteristics in the mandible under traumatic loading conditions. International Journal of Oral & Maxillofacial Implants, 25(3), 461-472.
Tu, M., Hsu, J., Fuh, L., Lin, D., & Huang, H. (2010). Effects of cortical bone thickness and implant length on bone strain and interfacial micromotion in an immediately loaded implant. International Journal of Oral & Maxillofacial Implants, 25(4), 706-714.
Demenko, V., Linetskiy, I., Nesvit, K., Hubalkova, H., Nesvit, V., & Shevchenko, A. (2014). Importance of diameter-to-length ratio in selecting dental implants: A methodological finite element study [Article]. Computer Methods in Biomechanics and Biomedical Engineering, 17(4), 443-449.
Kheiralla, L. S., & Younis, J. F. (2014). Pen-Implant Biomechanical Responses to Standard, Short-Wide, and Mini Implants Supporting Single Crowns Under Axial and Off-Axial Loading (an In Vitro Study). journal of oral implantology, 40(1), 42-52.
Lu, Y. J., Chang, S. H., Ye, J. T., Ye, Y. S., & Yu, Y. S. (2015). Finite Element Analysis of Bone Stress around Micro-Implants of Different Diameters and Lengths with Application of a Single or Composite Torque Force. PLoS ONE, 10(12).
Ruzas, M., & Sesok, A. (2017). Biomechanical Investigation of Titanium and Zirconia Dental Implants. Mechanika, 23(4), 495-499.
Ueda, N., Takayama, Y., & Yokoyama, A. (2017). Minimization of dental implant diameter and length according to bone quality determined by finite element analysis and optimized calculation. Journal of prosthodontic research, 61(3), 324-332.
Hingsammer, L., Pommer, B., Hunger, S., Stehrer, R., Watzek, G., & Insua, A. (2019). Influence of Implant Length and Associated Parameters Upon Biomechanical Forces in Finite Element Analyses: A Systematic Review. Implant Dentistry, 28(3), 296-305.
Raaj, G., Manimaran, P., Kumar, C., Sadan, D., & Abirami, M. (2019). Comparative evaluation of implant designs: Influence of diameter, length, and taper on stress and strain in the mandibular segment-A three-dimensional finite element analysis [Article]. Journal of Pharmacy and Bioallied Sciences, 11(6), S347-S354.
Banerjee, A., Rana, M., Chakraborty, A., Singh, A. P., & Chowdhury, A. R. (2022). Influence of implant parameters on biomechanical stability of TMJ replacement: A finite element analysis. International Journal of Artificial Organs, 45(8), 715-721.
Naguib, G. H., Hashem, A. H., Abougazia, A., Mously, H. A., Qutub, O. A., & Hamed, M. T. (2023). Effect of non-rigid connector on the stress distribution of tooth-implant supported fixed prostheses using different implant length and diameter: A comparative 3D finite element study. Journal of Prosthodontics-Implant Esthetic and Reconstructive Dentistry, 32(6), E129-E138.
Naguib, G. H., Hashem, A. H., Natto, Z. S., Abougazia, A. O., Mously, H. A., & Hamed, M. T. (2023). The Effect of Implant Length and Diameter on Stress Distribution of Tooth-Implant and Implant Supported Fixed Prostheses: An In Vitro Finite Element Analysis Study. Journal of Oral Implantology, 49(1), 46-54.
Qiu, P. P., Cao, R. K., Li, Z. Y., & Fan, Z. (2024). A comprehensive biomechanical evaluation of length and diameter of dental implants using finite element analyses: A systematic review. Heliyon, 10(5).
Sayed, A. J., Mohsin, S. F., Garg, K. K., Agwan, M. A. S., Tareen, S. U. K., Alruthea, M. S., & Mohan, S. (2025). Finite Element Analysis (FEA) for Influence of Variation in Dental Implant Dimensions (Length and Diameter) on Peri-implant Bone Stress/Strain Distribution: A Systematic Review. Pakistan Journal of Medical Sciences, 41(1), 318-330.
Ortiz-Puigpelat, O., Lázaro-Abdulkarim, A., de Medrano-Reñé, J. M., Gargallo-Albiol, J., Cabratosa-Termes, J., & Hernández-Alfaro, F. (2019). Influence of Implant Position in Implant-Assisted Removable Partial Denture: A Three-Dimensional Finite Element Analysis [Article]. Journal of prosthodontics : official journal of the American College of Prosthodontists, 28(2), e675-e681.
J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia, 1995, pp. 1942-1948 vol.4.
Bozkaya, D., & Müftü, S. (2005). Mechanics of the taper integrated screwed-in (TIS) abutments used in dental implants. Journal of biomechanics, 38(1), 87–97.
Malchiodi, L., Moro, T., Cattina, D. P., Cucchi, A., Ghensi, P., & Nocini, P. F. (2018). Implant rehabilitation of the edentulous jaws: Does tilting of posterior implants at an angle greater than 45° affect bone resorption and implant success?: A retrospective study. Clinical implant dentistry and related research, 20(5), 867–874.
Nobel Biocare. (n.d.). All-on-4® treatment concept manual (US_79360 C). Nobel Biocare Services AG.