簡易檢索 / 詳目顯示

研究生: 鄭皓中
CHENG, HAO-CHUNG
論文名稱: 鎢作為指叉狀電極用於光電化學分解水增加產氫效率之研究
Tungsten as interdigitated electrodes for photoelectrochemical water splitting hydrogen production increase efficiency
指導教授: 賴韋志
LAI, WEI-ZHI
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 84
中文關鍵詞: 氮化鎵光電解水產氫選擇性成長
外文關鍵詞: GaN, Tungsten, Water Splitting, selectively growth
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究使用三五族半導體材料中的氮化鎵作為光電化學反應之工作電極用於電解水產生氫氣。為了有效的增加產氫效率將電極改變成為延伸至底部的指叉狀電極,希望可以藉由減短電子行經的路徑進而增加收集電子的能力。藉由磊晶再成長技術將金屬電極嵌入至半導體中,使用二氧化矽作為遮罩蓋在半導體上,沒有被包覆住的部分會有選擇性成長現象且會有不同極性面產生,此研究探討選擇性成長的氮化鎵的光電化學反應效應。

    為了承受金屬有機化學氣相沉積磊晶過程中的高溫,金屬材料的選擇上需要考量到熔點溫度且不影響成長完後氮化鎵的表面狀態,金屬作為指叉狀電極延伸至底部,在電性方面再成長過後與氮化鎵需要有歐母接觸。金屬鎢滿足上述的條件,且可以透過磁控濺鍍的方式在常溫下就可以沉積,故選用他作為指叉狀電極的材料。實驗過程中發現金屬鎢在磊晶再成長過程後,電極下方的氮化鎵表面會有被蝕刻現象,要改善此情形在氮化鎵基板上方成長一層高摻雜的氮化鋁鎵層解決表面被蝕刻現象。

    使用恆電位儀連接半導體工作電極及白金相對電極還有銀/氯化銀參考電極,泡入氯化鈉電解液中進行光電化學量測。結果顯示使用鎢作為指叉狀電極有可以有效降低起始電壓及提高在零偏壓下的光電流值。由於電子在半導體內部行走的路徑大幅降低,相對的減少移動過程中被缺陷所捕獲的機率。選擇性成長後產生的半極性面會吸收散射光,有效增加光電化學反應能力。光電流表現提升相對的光電化學電解水產生氫氣的能力也增加。

    This study used III-V semiconductor material gallium nitride as a working electrode for photoelectric chemical reaction of electrolysis of water to produce hydrogen. By epitaxial regrowth techniques metal electrodes embedded in the semiconductor using SiO2 as a mask cover the semiconductor.The choice of metal material to the melting point and does not need to consider the influence of surface state after growing gallium nitride. Tungsten satisfy the above conditions. During the experiment found that tungsten in the epitaxial growth process again, gallium nitride will be below the surface of the electrode is etched phenomenon, to improve this situation in the gallium nitride layer over the substrate to grow high-doped aluminum gallium nitride surface layer resolved etched phenomenon.
    Use potentiostat connecting the semiconductor working electrode and the counter electrode of platinum as well as silver / silver chloride reference electrode, soak into the sodium chloride electrolyte were photoelectrochemical measurements. The results showed that the use of tungsten as an interdigitated electrode has effectively reduced starting voltage and improve the light current at zero bias. Due to significantly reduce the electron within the semiconductor walking path, a relative decrease in the probability of being captured by the defect during the move. Semi-polar surface produced after a selective growth will absorb stray light, effectively increasing the photoelectrochemical reaction capability. Capability to enhance performance relative photocurrent photoelectrochemical electrolysis of water to produce hydrogen gas also increases.

    目錄 摘要 II 致謝 VIII 目錄 IX 圖目錄 XII 表目錄 XV 第一章 序論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 理論基礎 5 2.1 半導體的介紹及分類 5 2.2 半導體/電解液界面平衡時的能帶分佈 7 2.3 光電化學系統 8 2.4 平帶電位 11 2.5 極化電場 13 第三章 實驗製程與儀器系統 24 3.1 實驗製程機台 24 3.1.1 金屬有機物化學氣相沉積系統 24 3.1.2 磁控濺鍍系統 24 3.1.3 電漿輔助化學氣相沉積系統 25 3.1.4 電子束蒸鍍 26 3.1.5 黃光微影系統 26 3.2 量測機台 28 3.2.1 微輪廓測量儀 28 3.2.2 霍爾效應量測儀 28 3.2.3 半導體量測儀 28 3.2.4 光電化學量測系統 29 3.2.5 掃描式電子顯微鏡 29 3.3 實驗製程及步驟 30 3.3.1 試片製備 30 3.3.2 電壓-電流特性量測 32 第四章 實驗結果與討論 38 4.1 光電流分析 38 4.1.1 ITO作為指叉狀電極分析 38 4.1.2 圖型化基板分析 39 4.1.3 鎢作為指叉狀電極分析 40 4.2 以SEM圖分析光電化學反應情形 42 第五章 結論與未來展望 84 5.1 結果與討論 84 5.2 未來展望 85 第六章 參考文獻 86

    [1]M. I. Hoffert, “Farewell to Fossil Fuels?,” Science, vol. 329, pp. 1292-1294, 2010.
    [2]S. Pacala and R. Socolow, “Stabilization wedges: solving the climate problem for the next 50 years with current technologies,” Science, vol. 305, pp. 968-972, 2004
    [3]Luque and A. Marti, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater, vol. 22, pp.160-174, 2010.
    [4]A. Marti and A.Luque, “Intermediate band solar cells,” Advance in Science and Technology, vol. 74, pp. 143-150, 2011.
    [5]Kreuter W, Hofmann H, “Electrolysis:the important energy transformer in a world of sustainable energy,” Int J Hydrogen Energy, pp.661-666, 1998.
    [6]Allen J. Bard, Marye Anne Fox, “Artificial Photosynthesis:Solar Splitting of Water to Hydrogen and Oxygen,” Acc. Chem. Res. vol. 28, pp.141-145, 1995.
    [7]Katsushi Fujii, Takeshi Karasawa and Kazuhiro Ohkawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation”, Jpn. J. Appl. Phys., vol. 44, pp. L543-L545, 2005.
    [8]M. Tomkiewicz and H. Fay, “Photoelectrolysis of water with semiconductors”, Appl. Phys., vol.18, no.1, pp.1-28, 1979.
    [9]S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, “Electrochemical Investigation of the Gallium Nitride-Aqueous Electrolyte Interface”, J. Electrochem. Soc., vol.142, pp.L238-L240, 1995.
    [10]K. Fujii, T. Karasawa, and K. Oshawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation”, Jpn. J. Appl. Phys., vol.44, pp.L543-L545, 2005.
    [11]Shu-Yen Liu,Yu-Chuan Lin,Jhao-Cheng Ye,S.J.Tu,F.W.Huang,M.L.Lee,W.C.Lai,and J.K.Sheu, “Hydrogen Gas Generation using n-GaN photoelectrodes with immersed Indium Tin Oxide ohmic contacts”,OPTICS EXPRESS.,vol.19,No.S6,2011
    [12]Simon Min Sze, “Semiconductor Devices: Physics and Technology”, John Wiley & Sons Inc, 2001
    [13]Akihiko Kudo, “Photocatalyst Materials for Water Splitting”, Catalysis Surveys from Asia, vol.7, no.1, pp.31-38, 2004.
    [14]粘駿楠, “銅氧化物結構對其催化和光電化學反應性之影響”, 國立成功大學化學工程學研究所博士論文, 2006.
    [15]Allen J. Bard (Editor), Martin Stratmann (Editor), Stuart Licht (Editor), “Encyclopedia of Electrochemistry, Volume 6, Semiconductor Electrodes and Photoelectrochemistry”, John Wiley & Sons, Inc., 2002
    [16]Katsushi Fujii, Masato Ono, Takashi Ito, Yasuhiro Iwaki, Akira Hirako, and KazuhiroOhkawa, “Band-Edge Energies and Photoelectrochemical Properties of n-Type AlxGa1−xN and InyGa1−yN Alloys”, J. Electrochem. Soc., vol.154, Issue 2, pp. B175-B179 , 2007.
    [17]AJ. Nozik, “Physical Chemistry of Semiconductor-Liquid Interfaces,” J. Phys. Chem., vol. 100, pp. 13061-13078, 1996.
    [18] A.W. Bott, “Electrochemistry of Semiconductors”, Current Separations, vol.17, no.3, pp.87-91, 1998.
    [19]C. A. Grimes, O. K. Varghese, S. Ranian, “Light, Water, Hydrogen-The Solar Generation of Hydrogen by Water Photoelectrolysis,” Springer, 2008.
    [20]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., Vol. 85, No. 6, 1999.
    [21]A. E. Romanov, T. J. Baker, S. Nakamura, J. S. Speck, “Strain-induced polarization in wurtzite III-nitride semipolar layers,” J. Appl. Phys. 100, 2006.
    [22]I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys., Vol. 94, No. 6, 2003.
    [23]Koval CA, Howard JN, “Electron transfer at semiconductor electrode-liquid electrolyte interfaces,” Chem. Rev. vol. 92, pp.411-433, 1992.
    [24]Lewis NS, “Mechanistic studies of light-induced charge separation at semiconductor / liguid interfaces,” Acc. Chem. Res., vol. 23, pp.176-183, 1990.
    [25]顏政雄, “奈米金粒子修飾氮化鎵電極之光電化學特性及其在直接光照水分解產氫之應用,” 國立海洋大學光電科學研究所碩士論文, 2009.
    [26]鄭惇文, “毛細管電泳電化學偵測系統:以商業化元件光纖連接器改善毛細管與電極對準的問題”, 國立中山大學化學研究所碩士論文, 2001.
    [27]Allen J. Bard, Larry R. Faulkner, “Electrochemical Methods: Fundament-als and Applications, 2nd Edition”, John Wiley & Sons, Inc., 2001.
    [28]A.W. Bott, “Electrochemistry of Semiconductors”, Current Separations, vol.17, no.3, pp.87-91, 1998.
    [29]Michael Grätzel, “Photoelectrochemical cells”, Nature, vol.414, pp.338-344, 2001.
    [30]周柏翰, “應用不同結構及電化學處理於n型氮化鎵光電解水產氫之研究”, 國立成功大學光電科學與工程學系碩士論文, 2012.
    [31]陳育同, “氮化物工作電極應用於光電化學電解水產氫特性之研究,” 國立成功大學光電科學與工程學系碩士論文, 2013.
    [32]林秉寬, “氮化鎵極性於光電解水產氫之研究” 國立成功大學光電科學與工程學系碩士論文, 2014.
    [33]Ho Won Jang, Jung-Hee Lee, and Jong-Lam Lee, “Characterization of band bendings on Ga-face and N-face GaN films grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 80, No. 21, 27 May 2002.
    [34] 葉昭呈, “氮化鎵電極光電解水產氫之光電化學特性研究”, 國立成功大學光電科學與工程學系碩士論文, 2010.
    [35]Yan-Gu Lin, Yu-Kuei Hsu, Antonio M. Basilio, Yit-Tsong Chen, Kuei-Hsien Chen, and Li-Chyong Chen, “Photoelectrochemical activity on Ga-polar and N-polar GaN surfaces for energy conversion,” OPTICS EXPRESS, Vol. 22, No. S1, 2014.
    [36]Katsushi FUJII, Yasuhiro IWAKI, Hisashi MASUI, Troy J. BAKER, Michael IZA, Hitoshi SATO, John KAEDING, Takafumi YAO, James S. SPECK, Steven P. DENBAARS, Shuji NAKAMURA, and Kazuhiro OHKAWA, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Japanese Journal of Applied Physics, Vol. 46, No. 10A, 2007.
    [37]Hiroki SONE, Shingo NAMBU, Yasutoshi KAWAGUCHI, Masahito YAMAGUCHI, Hideto MIYAKE,Kazumasa HIRAMATSU, Yasushi IYECHIKA, Takayoshi MAEDA and Nobuhiko SAWAKI, “Optical and Crystalline Properties of Epitaxial-Lateral-Overgrown-GaNUsing Tungsten Mask by Hydride Vapor Phase Epitaxy” ,Jpn. J. Appl. Phys. Vol. 38 ,pp. L 356–L 359,1999
    [38]Masahiro HAINO, Motoo YAMAGUCHI, Hideto MIYAKE, Atsushi MOTOGAITO, Kazumasa HIRAMATSU,Yasutoshi KAWAGUCHI, Nobuhiko SAWAKI, Yasushi IYECHIKA and Takayoshi MAEDA, “Buried Tungsten Metal Structure Fabricated by Epitaxial-Lateral-Overgrown GaN viaLow-Pressure Metalorganic Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. Vol. 39 , pp. L 449–L 452,2000
    [39]Chu-Young Cho, Min-Ki Kwon, Il-Kyu Park, Sang-Hyun Hong, Jae-Joon Kim,2Seong-Eun Park, Sung-Tae Kim, and Seong-Ju Park, “ High-efficiency light-emitting diode with air voids embedded in lateral epitaxially overgrown GaN using a metal mask”, OPTICS EXPRESS, Vol. 19, No. S4,2011

    無法下載圖示 校內:2020-08-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE