| 研究生: |
楊珮芸 Yang, Pei-Yun |
|---|---|
| 論文名稱: |
量子奈米元件噪聲譜及含初始關聯的量子輸運理論 Noise spectra and initial correlation effects of transient quantum transport in nanostructures |
| 指導教授: |
張為民
Zhang, Wei-Min |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 量子輸運 、噪聲譜 、初始關聯 |
| 外文關鍵詞: | quantum transport, noise spectra, initial correlations |
| 相關次數: | 點閱:95 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們研究了奈米電子元件的瞬時輸運電流和瞬時電流關聯函數。輸運電流和電流關聯函數是研究奈米結構的電子量子輸運裡最主要的兩個物理量,他們刻劃了電子的量子輸運行為並且是直接的實驗可觀測量。我們利用量子郎之萬方程(quantum Langevin equation)研究並計算了瞬時電流關聯函數及其對應的瞬時噪聲譜,給出了它們的具體解析形式。在沒有取寬帶極限(wide band limit)的條件下,我們針對單能階量子點奈米結構進行系統性的分析,得到了在不同的溫度和偏壓下的瞬時電流關聯函數和瞬時噪聲譜。從中我們探討了在不同時刻電子輸運與奈米系統的能量結構之間的關係以及電子不同輸運方向到達穩態的時間尺度。另外,我們利用量子郎之萬方程導出了嚴格的含初始關聯的量子主方程,並由此建立了一個含初始關聯的量子輸運理論。藉由量子主方程,我們得到了含初始關聯的瞬時輸運電流。我們證明了,當系統存在局域態(localized state)時,不管是在系統中電子輸運到達穩態前還是到達穩態後,初始關聯都會對量子輸運造成各種不同程度的影響,充分顯示出量子輸運過程中的非馬可爾夫記憶(non-Markovian memory)效應。
Transport current and current-current correlations are major quantities for the study of quantum transport through nanostructures. They characterize the transport properties, and can be examined through experimental measurements. In this thesis, we investigate quantum transport current and current-current correlations in the transient regime. In particular, utilizing the quantum Langevin equation, we obtain a general formalism for transient current-current correlations and transient noise spectra for noninteracting nanostructures. The exact solution of transient current correlations in both the time and the frequency domains are explicitly carried out for a single-level quantum dot system. We investigate transient current-current correlations with different bias voltages at different temperatures, without taking the wideband limit. Transient noise spectra over the whole frequency range are found. Various time scales associated with the energy structures of nanostructures are extracted through the transient current-current correlations and transient noise spectra. We also derived the exact master equation incorporating initial
system-lead correlations through the quantum Langevin equation. The transient electron transport current incorporating initial correlations is obtained by solving the master equation. We show that the initial correlations can affect quantum transport not only in the transient regime, but also in the steady-state limit when system-lead couplings are strong enough such that electron localized states occur in the device system, which sufficiently manifests non-Markovian memory effects.
[1] M. A. Kastner, Physics Today, 46, 24 (1993).
[2] L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).
[3] E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T.
C. McGill, Appl. Phys. Lett. 58, 2291 (1991).
[4] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).
[5] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[6] H. Ohnishi, T. Inata, S. Muto, N. Yokoyama, and A. Shibatomi, Appl. Phys. Lett. 49, 1248 (1986).
[7] A. Szafer and A. D. Stone, Phys. Rev. Lett. 62, 300(1989).
[8] J. R. Barker and S. murray, Phys. Lett. 93A, 271 (1983).
[9] S. Datta, Electronic Transport in Mesoscopic Systems(Cambridge, 1995).
[10] Y. Imry, Introduction to Mesoscopic Physics, (2nd Ed. Oxford, 2002).
[11] R. Landauer, IBM J. Res. Dev. 1, 223 (1957).
[12] R. Landauer, Philos. Mag. 21, 863 (1970).
[13] R. Landauer, Nature (London) 392, 658 (1998).
[14] M. Buttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).
[15] M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986).
[16] M. Buttiker, Phys. Rev. B 38, 9375 (1988).
[17] M. Buttiker, Phys. Rev. B 41, 7906 (1990).
[18] M. Buttiker, Phys. Rev. B 46, 12485 (1992).
[19] Ya. M. Blanter, M. Buttiker, Phys. Rep. 336, 1 (2000).
[20] M. Moskalets and M. Buttiker, Phys. Rev. B 69, 205316 (2004).
[21] P. Samuelsson and M. Buttiker, Phys. Rev. B 73, 041305 (2006).
[22] O. Entin-Wohlman, A. Aharony, and Y. Levinson, Phys. Rev. B 65, 195411 (2002).
[23] M. Moskalets, and M. Buttiker, Phys. Rev. B 75, 035315 (2007).
[24] G. D. Mahan, Many Particle Physics (Plenum, New York, 1990), 2nd ed.
[25] H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semicon-
ductors (Springer Series in Solid-State Sciences Vol. 123, 2008).
[26] N. S. Wingreen, A. P. Jauho and Y. Meir, Phys. Rev. B 48, 8487(1993); idib. 50,
5528(1994).
[27] J. Schwinger, J. Math. Phys. (N.Y.) 2, 407 (1961).
[28] L.P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York,
1962)
[29] L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)].
[30] M. Gaudin, Nuclear Physics, 15, 89 (1960).
[31] G. Stefanucci and C.-O.Almbladh, Phys. Rev. B 69, 195318 (2004)
[32] D. C. Langreth: in Linear and Nonlinear Electron Transport in Solids, ed. by J. T. Devreese, E. Van Doren (Plenum, New York, 1976)
[33] T. Gramespacher and M. Buttiker, Phys. Rev. Lett. 81, 2763 (1998).
[34] L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 79, 2526 (1997).
[35] F. Lefloch, C. Hoffmann, M. Sanquer, and D. Quirion, Phys. Rev. Lett. 90, 067002 (2003).
[36] P. Samuelsson and M. Buttiker, Phys. Rev. B 73, 041305 (2006).
[37] R. J. Schoelkopf, P. J. Burke, A. A. Kozhevnikov, D. E. Prober, and M. J. Rooks, Phys. Rev. Lett. 78, 3370 (1997).
[38] R. Deblock, E. Onac, L. Gurevich, and L. P. Kouwenhoven, Science 301, 203(2003).
[39] E. Onac, F. Balestro, L. H. Willems van Beveren, U. Hartmann, Y. V. Nazarov, and L. P. Kouwenhoven, Phys. Rev. Lett. 96, 176601 (2006).
[40] E. Zakka-Bajjani, J. Segala, F. Portier, P. Roche, D. C. Glattli, A. Cavanna and Y. Jin, Phys. Rev. Lett. 99, 236803 (2007).
[41] R. Aguado and T. Brandes, Phys. Rev. Lett. 92, 206601 (2004).
[42] N. Lambert, R. Auguado, and T. Brandes, Pys. Rev. B 75, 045340 (2007).
[43] B. H. Wu, and C. Timm, Phys. Rev. B 81, 075309 (2010).
[44] H. A. Engel and D. Loss, Phys. Rev. Lett. 93, 136602 (2004).
[45] O. Entin-Wohlman, Y. Imry, S. A. Gurvitz, and A. Aharony, Phys. Rev. B 75, 193308 (2007).
[46] E. A. Rothstein, O. Entin-Wohlman, and A. Aharony, Phys. Rev. B 79, 075307
(2009).
[47] C. P. Orth, D. F. Urban, and A. Komnik, Phys. Rev. B 86, 125324 (2012).
[48] U. Gavish, Y. Levinson, and Y. Imry, Phys. Rev. B 62, 10637 (2000); R. Aguado and L. P. Kouwenhoven, Phys. Rev. Lett. 84, 1986 (2000).
[49] P. Billangeon, F. Pierre, R. Deblock, and H. Bouchiat, J. Stat. Mech. 1, 01041 (2009).
[50] N. Ubbelohde, C. Fricke, C. Flindt, F. Hohls, and R. J. Haug, Nat. Commun. 3, 612 (2012).
[51] A. Zazunov, M. Creux, E. Paladino, A. Crepieux, and T. Martin, Phys. Rev. Lett.
99, 066601 (2007).
[52] Z. Feng, J. Maciejko, J. Wang, and H. Guo, Phys. Rev. B 77, 075302 (2008).
[53] K. Joho, S. Maier, and A. Komnik, Phys. Rev. B 86, 155304 (2012).
[54] M. W. Y. Tu and W. M. Zhang, Phys. Rev. B 78, 235311 (2008); M. W. -Y. Tu,
M.-T. Lee, and W. M. Zhang, Quantum Inf. Processing (Springer) 8, 631 (2009).
[55] J. S. Jin, M. W. Y. Tu, W. M. Zhang, and Y. J. Yan, New J. Phys. 12, 083013 (2010).
[56] R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford Univ. Press, New York,
2001).
[57] G. F. Mazenlo, Nonequilibrium Statistics Mechanics (Wiley-VCH, Weinheim, 2006).
[58] R. P. Feynman, and F. L. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963).
[59] R. Aguado and L. P. Kouwenhoven, Phys. Rev. Lett. 84, 1986 (2000).
[60] L. Y. Chen, and C. S. Ting, Phys. Rev. B 43, 4534 (1991).
[61] J. Maciejko, J. Wang, and H. Guo, Phys. Rev. B 74, 085324 (2006).
[62] J. S. Jin, X. Zheng, and Y. J. Yan, J. Chem. Phys. 128, 234703 (2008).
[63] A. Malik, A. R. Sandy, L. B. Lurio, G. B. Stephenson, S. G. J. Mochrie, I. McNulty and M. Sutton, Phys. Rev. Lett. 81, 5832 (1998).
[64] F. Livet, F. Bley, R. Caudron, D. Abernathy, C. Detlefs, G. Grubel and M. Sutton, Phys. Rev. E 63, 036108 (2000); M. Sutton and K. Laaziri, F. Livet and F. Bley, Opt. Express 11, 2268 (2003).
[65] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y. -C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature 446, 782 (2007).
[66] E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, Nature 463, 644 (2010).
[67] W. Lu, Z. Ji, L. PfeiRer, K. W. West, and A. J. Rimberg, Nature (London) 423, 422 (2003).
[68] J. Bylander, T. Duty, and P. Delsing, Nature (London) 434, 361 (2005)
[69] S. Gustavsson, I. Shorubalko, R. Leturcq, S. Schon, and K. Ensslin, Appl. Phys. Lett. 92, 152101 (2008).
[70] H. Schoeller and G. Schon, Phys. Rev. B 50, 18436 (1994).
[71] S. A. Gurvitz and Ya. S. Prager, Phys. Rev. B 53, 15932 (1996).
[72] K. C. Chou, Z.-B. Su, B.-L. Hao, L. Yu, Phys. Rep. 118, 1 (1985);
[73] J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
[74] M. Cini, Phys. Rev. B 22, 5887 (1980).
[75] G. Stefanucci and C.-O. Almbladh, Phys. Rev. B 69, 195318 (2004).
[76] G. Stefanucci, Phys. Rev. B 75, 195115 (2007).
[77] R. Kubo, S. J. Muyake, and N. Hashitsume, Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic, New York, 1965),Vol. 17,p. 269.
[78] C. Cercignani, Theory and Application of the Boltzmann Equation (Edinburgh: Scottish Academic Press, 1975).
[79] H. Smith and H. H. Jensen, Transport Phenomena (Oxford: Clarendon, 1989)
[80] X. Q. Li, J. Luo, Y. G. Yang, P. Cui, and Y. J. Yan, Phys. Rev. B 71, 205304 (2005).
[81] P. Y. Yang, C. Y. Lin, and W. M. Zhang, Phys. Rev. B 89, 115411 (2014).
[82] M. W.-Y. Tu, W. M. Zhang, J. S. Jin, O. Entin-Wohlman, and A. Aharony, Phys.
Rev. B 86, 115453 (2012).
[83] M. W.-Y. Tu, A. Aharony, W. M. Zhang, and O. Entin-Wohlman, Phys. Rev. B 90,
165422 (2014).
[84] W. M. Zhang, P. Y. Lo, H. N. Xiong, M. W. Y. Tu, and F. Nori, Phys. Rev. Lett.
109, 170402 (2012).
[85] P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford Uni-
versity Press, New York, 2002).
[86] H. L. Lai, W. M. Zhang (unpublished).
[87] U. Fano, Phys. Rev. 124, 1866 (1961).
[88] X. Yin, M. W.-Y. Tu, P. Y. Lo, and W. M. Zhang (in parapation).
[89] S. P. Giblin, M. Kataoka, J. D. Fletcher, P. See, T. J. B. M. Janssen, J. P. Griffths,
G. A. C. Jones, I. Farrer, and D. A. Ritchie, Nat. Commun. 3, 930 (2012).
[90] P. Y. Lo, H. N. Xiong and W. M Zhang, Sci. Rep. 5, 09423 (2015).
[91] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[92] A. Dhar and D. Sen, Phys. Rev. B 73, 085119 (2006).
[93] J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).
[94] P. Pomorski, L. Pastewka, C. Roland, H. Guo, and J. Wang, Phys. Rev. B 69, 115418 (2004).
[95] V. Vettchinkina, A. Kartsev, D. Karlsson, and C. Verdozzi, Phys. Rev. B 87, 115117 (2013).
[96] A. Schiller and S. Hershfield, Phys, Rev. B 58, 14978 (1998).
[97] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
[98] C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, J. Phys. C 4,916 (1971); C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, J. Phys. C 4, 2598 (1971).
[99] W. M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys. 62, 867 (1990).
[100] P. W. Anderson, Phys. Rev. 124, 41 (1961)
[101] K. Thibault, J. Gabelli, C. Lupien, and Bertrand Reulet, Phys. Rev. Lett. 114,
236604 (2015).
[102] C. Flindt, C. Fricke, F. Hohls, T. Novotny, K. Netocny, T. Brandes, and R. J. Haug, Proc. Natl. Acad. Sci. 106, 10116 (2009).
[103] A. Braggio, J. Konig, and R. Fazio, Phys. Rev. Lett. 96, 026805 (2006).
[104] C. Emary, D. Marcos, R. Aguado, and T. Brandes, Phys. Rev. B. 76, 161404(R)
(2007); T. Brandes, Ann. Phys. (Berlin) 17, 477 (2008).
[105] C. Flindt, T. Novotny, A. Braggio, M. Sassetti, and A.-P. Jauho, Phys. Rev. Lett. 100, 150601 (2008).
[106] J. Splettstoesser, S. Olkhovskaya, M. Moskalets, and M. Buttiker, Phys. Rev. B 78, 205110 (2008).
[107] K. Schonhammer, Phys. Rev. B 75, 205329 (2007).
[108] G. M. Tang, F. Xu, and J. Wang, Phys. Rev. B 89, 205310 (2014).
[109] G. M. Tang and J. Wang, Phys. Rev. B 90, 195422 (2014).
[110] S. Nakajima, Prog. Theo. Phys. 20, 948 (1958).
[111] R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).
[112] J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
[113] D. G. Gordon, J. Gores, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav,
Phys. Rev. Lett. 81, 5225 (1998).
[114] A. C. Hewson, The Kondo Problem to Heavy Fermions. Cambridge Studies in Mag-
netism Vol. 2 (Cambridge University Press, Cambridge, 1993).