簡易檢索 / 詳目顯示

研究生: 顏嘉德
Yen, Chia-te
論文名稱: 有機太陽能電池中烷基駢苯衍生物薄膜所受應力隨厚度紓解之研究
Stress release driven by film thickness of N-alkyl perylene diimides in organic solar cells
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 59
中文關鍵詞: 激子生命期駢苯衍生物應力厚度有機太陽能電池
外文關鍵詞: thickness, PTCDI-13C, organic solar cell, stress, exaction life-time
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以五環素(pentacene)作為P型有機材料,N,N′-Ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-13C)作為N型有機材料,製作出pentacene/PTCDI-13C異質接面結構的有機太陽能電池。藉由改變成長在pentacene的駢苯衍生物(PTCDI-13C)厚度來討論PTCDI-13C結構內分子所受的應力對太陽能電池轉換效率的影響。當PTCDI-13C厚度越薄,所受到的應力越大,晶格排列較為混亂,太陽能電池的轉換效率低;當PTCDI-13D厚度逐漸增加,所受的應力逐漸消逝,晶格排列較為整齊,轉換效率亦隨之增加。嘗試利用時間解析螢光光譜測量PTCDI-13C吸收光子後產生的激子(電子電洞對)生命期,發現不同厚度PTCDI-13C產生出的激子具有不同的生命期長度,以厚度50 nm的PTCDI-13C電子電洞對生命期最長,亦即激子有更大的機會可飄移到P/N接面處進行分離成自由電荷而非複合發光;而太陽能元件的轉換效率中發現,當PTCDI-13C的厚度從10 nm改變成50 nm,元件的光轉換效率可由0.08%提升至0.34%;當PTCDI-13C厚度繼續增加至70 nm時,光轉換效率旋即降至0.16%;實驗結果可看出PTCDI-13C厚度對有機太陽能電池光效率轉換的明顯影響,其中厚度對轉換效率的影響機制將在論文中詳細討論。

    The pentacene and N,N′-Ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-13C) are used as the acceptor and donor to construct the bi-layer organic solar cell in this research. The various thicknesses of PTCDI-13C films were formed in organic solar cell in order to compare the stress effect that influenced the efficiency of the organic solar cell. The results reveal that the maximum efficiency of the organic solar cell occurred at the condition of 50-nm-thick PTCDI-13C film for the release of the stress and without the aggregation of PTCDI-13C molecules. Moreover, the lifetime of exciton in different PTCDI-13C thicknesses were analyzed by time-resolved photoluminescence. The longest exciton lifetime also appeared at the 50-nm-thick PTCDI-13C film to result in easy drift of these excitons to heterojunction of the PTCDI-13C and pentacene and separations of carriers from these excitons. The power conversion efficiency can improved gradually from 0.08% to 0.34% when the thickness of PTCDI-13C film increases from 10 to 50 nm. However, the power conversion efficiency gradually drops from 0.34% to 0.16% when increasing the PTCDI-13C thickness from 50 to 70 nm. The experimental result shows that the thickness of PTCDI-13C film in bi-layer organic solar cell significantly influenced the efficiency of the organic solar cell.

    摘要……………………………………………………………………III Abstract………………………………………………………………IV 致謝……………………………………………………………………V 目次……………………………………………………………………VI 表目錄…………………………………………………………………IX 圖目錄…………………………………………………………………X 第一章 序論…………………………………………………………1 1.1 前言……………………………………………………………… 1 1.2 替代能源-太陽能……………………………………………… 1 1.3 太陽能電池的種類……………………………………………… 2 1.3.1 無機太陽能電池………………………………………………3 1.3.2 有機太陽能電池………………………………………………4 1.4 太陽能電池發展現況…………………………………………… 5 第二章 有機太陽能電池工作原理……………………………… 11 2.1 太陽能電池工作機制……………………………………………11 2.2 太陽能電池等效電路……………………………………………12 2.3 電流-電壓特性曲線………………………………………………13 2.3.1 短路電流………………………………………………………13 2.3.2 開路電壓………………………………………………………13 2.3.3 填充因子………………………………………………………13 2.3.4 光電轉換效率…………………………………………………14 2.4 太陽輻射…………………………………………………………14 第三章 元件製程與特性分析原理……………………………………21 3.1 實驗儀器…………………………………………………………21 3.1.1 物理氣象沈積…………………………………………………21 3.1.2 X光繞射………………………………………………………21 3.1.3 光激發螢光……………………………………………………22 3.1.4 時間解析光譜測量……………………………………………22 3.2 實驗材料…………………………………………………………23 3.3 太陽能電池製作流程……………………………………………24 3.3.1 實驗架構………………………………………………………24 3.3.2 ITO基板處理…………………………………………………25 3.3.3 電洞注入層……………………………………………………25 3.3.4 主動層薄膜的成長……………………………………………26 3.3.5 金屬電極的蒸鍍………………………………………………27 3.4 元件效率量測……………………………………………………28 3.4.1 校正模擬太陽光………………………………………………28 3.4.2 元件電流-電壓特性曲線量測………………………………28 第四章 有機太陽能電池電性與特性分析結果………………………33 4.1 前言………………………………………………………………33 4.2 X-ray繞射分析……………………………………………………34 4.3 光激發螢光分析…………………………………………………35 4.4 時間解析光譜分析………………………………………………37 4.5 太陽能電池電性與討論…………………………………………39 第五章 結論與未來展望………………………………………………56 5.1 結論………………………………………………………………56 5.2 未來展望…………………………………………………………57 參考文獻………………………………………………………………58

    [1] 陳文嘉,大眾時代 ( http://mass-age.com/wpmu/blog/2008/06/09/3357 )
    [2] M. Gratzel, ”Photochemical Cells”, Nature 414, 338 (2001)
    [3] 陳方中,工業材料雜誌 219,P150-158 (2005)
    [4] V. Y. Merritt, and H. J.Hovel, Appl. Phys. Lett. 29, 414 (1967)
    [5] C. W. Tang, ”Two-layer organic photovoltaic cell”, Appl. Phys. Lett. 48, 83 (1986).
    [6] P. Peumans, V. Bulovi, and S. R. Forrest,”Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes”, Appl. Phys. Lett. 76, 2650 (2000)
    [7] P. Peumans, and S. R. Forrest, ”Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells”, Appl. Phys. Lett. 79, 126 (2001).
    [8] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, ”4.2% efficient organic photovoltaic cells with low series resistances”, Appl. Phys. Lett. 84, 3013 (2004).
    [9] G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger,”Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science 270, 1789 (1995).
    [10] S. E. Shaheen, D. S. Ginley, G. E. Jabbour,”Organic-Based Photovoltaics:Toward Low-Cost Power Generation”, Mrs. Bull. 30, 10 (2005)
    [11] 美國國家再生能源實驗室(NREL, http://www.nrel.gov )
    [12] Klaus Petritsch, ”Organic Solar Cell Architectures ”, PhD Thesis (2000)
    [13] S. O. Kasap, Optoelectronics and Photonics Principles and Practices, Chapter 6.
    [14] 林思佑,國立成功大學碩士論文(2007)
    [15] Thin Film Physics Group ( http://www.tfp.ethz.ch/Lectures/pv/spectrum.html )
    [16] N. Yoneya, M. Noda, N. Hirai, K. Nomoto, M. Wada, and J. Kasahara, ”Reduction of contact resistance in pentacene thin-film transistors by direct carrier injection into a-few-molecular-layer channel” , Appl. Phys. Lett. 85, 4663 (2004)
    [17] A. Pandey, D.-S. Sylvie, J.-M. Nunzi, ”Pentacene: PTCDI-C13H27 molecular blends efficiently harvest light for solar cell applications”, Appl. Phys. Lett. 89, 113506 (2006)
    [18] S. Yoo, B. Domercq, and B. Kipplen, ”Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions”, Appl. Phys. Lett. 85, 5427 (2004)
    [19] S. Tatemichi, M. Ichikawa, T. Koyama, and Y. Taniguchi,”High mobility n-type thin-film transistors based on N, N-ditridecyl perylene diimide with thermal treatments”, Appl. Phys. Lett. 89, 112108 (2006)
    [20] C. Rost, S. Karg, W. Riess, M. A. Loi, M. Murgia, M. Muccini, ” Light-emitting ambipolar organic heterostructure field-effect transistor”, Synthetic Metals. 146, 237–241 (2004)
    [21] S. Sista, Y. Yao, Y. Yang, M. L. Tang and Z. Bao, ” Enhancement in open circuit voltage through a cascade-type energy band structure”, Appl. Phys. Lett. 91, 223508 (2007)

    下載圖示 校內:2010-07-30公開
    校外:2010-07-30公開
    QR CODE