簡易檢索 / 詳目顯示

研究生: 鍾治弘
Chung, Chih-Hung
論文名稱: 紅外光光譜於異質接面共軛有機高分子薄膜形貌之探討
The characterization of thin-film morphologies on bulk-heterojunction conjugated polymer films by infrared spectroscopy
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 99
中文關鍵詞: 薄膜形貌共軛高分子電荷轉移
外文關鍵詞: thin film morphology, conjugated polymer, charge transfer
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是以反射式紅外光光譜儀研究有機共軛高分子材料之薄膜形貌。透過反射式紅外光光譜儀對垂直表面的分子偶極矩敏感的特性,可以得知高分子共軛平面相對於基板的翻轉情形。因此,我們可以用來分析有機共軛高分子poly(3-hexylthiophene) (P3HT)以及C60的衍生物[6,6]-phenyl-C61-butyric acid methyl ester (PCBM)在不同溶劑、不同退火溫度及不同混合比例下的薄膜形貌。以Chloroform當溶劑下,純P3HT的共軛平面會較平行於基板;摻混PCBM後,P3HT的共軛平面會隨著溫度變化而有明顯的翻轉情形且會有代表電荷轉移的新的吸收峰產生。若能釐清薄膜形貌與電荷轉移能力的對應關係,將有助於提昇有機元件的效率。

    The main topic in this thesis is to study the thin-film morphologies of conjugated polymer films by infrared spectroscopy. Due to the sensitivity of reflection-absorption-infrared-spectroscopy to the molecular dipole moment which is vertical to the substrate, we can realize the orientation of polymer conjugated plane on the substrate. By analyzing the thin film morphologies of poly(3-hexylthio-phene) (P3HT) and [6,6]-phenyl- C61-butyric acid methyl ester (PCBM) in different solvents, different annealing temperature and different mixing ratio. Usimg Chloroform for solvent, the conjugated plane of P3HT was parallel to the substrate. After doping PCBM into P3HT, the orientation of conjugated plane changed strongly with the variation of temperateure, and the new peak due to charge transfer was found. By understanding the relationship between thin film morphologies an charge transfer, we can improve the efficiency of the organic devices.

    第一章 緒論 1 1-1前言 1 1-2有機半導體簡介 2 1-2-1 有機半導體的發展 2 1-2-2 有機太陽能電池的發展 5 1-2-3 有機太陽能電池工作原理 11 1-3研究動機與大綱 14 1-3-1 薄膜形貌的影響 14 1-3-2 研究動機 16 1-3-3 論文大綱 17 第二章 紅外光光譜儀工作原理與結構 19 2-1 紅外光光譜儀工作原理 19 2-1-1 紅外光光譜儀簡介 19 2-1-2 分子的偶極矩變化 19 2-1-3 分子的振動與轉動 20 2-1-4 傅立葉紅外光光譜儀(Fourier Transform Infrared Spectrometry, FTIR) 23 2-2 反射式紅外光光譜儀工作原理 25 2-2-1 反射式紅外光光譜儀簡介 25 2-2-2 紅外光的極化 25 2-2-3 光的入射角 27 2-3 紅外光光譜儀的結構 27 2-3-1 結構示意圖 27 2-3-2 麥克森干涉儀 28 2-3-3 樣品載台 29 2-3-4 偵測器:焦電感測器 30 2-3-5 偵測器:光導感測器 31 2-4 樣品製作 31 2-4-1 前言 31 2-4-2 RA-FTIR樣品製作 31 2-4-3 TA-FTIR樣品製作 33 2-5 樣品量測 35 2-5-1 RA-FTIR量測 35 2-5-2 TA-FTIR量測 36 2-6 結論 36 第三章 討論poly(3-hexylthiophene) (P3HT)共軛平面翻轉之薄膜形貌變化 37 3-1 前言 37 3-2 P3HT、PCBM頻譜解析 37 3-3 純P3HT中P3HT共軛平面翻轉之探討 39 3-3-1 討論純P3HT在不同溶劑中P3HT共軛平面之變化 39 3-3-2 討論純P3HT在不同退火溫度中P3HT共軛平面之變化 45 3-4 P3HT:PCBM中P3HT共軛平面翻轉之探討 54 3-4-1討論P3HT:PCBM在不同溶劑中P3HT共軛平面變化 54 3-4-2討論P3HT:PCBM在不同退火溫度中P3HT共軛平面之變化 60 3-4-3討論P3HT:PCBM在不同混合比例中P3HT共軛平面之變化 73 3-5 結論 91 第四章 總結與未來展望 95 4-1 實驗總結 95 4-2 未來展望 96 參考資料 97 自述 99

    [1] K. Coakley, L. Yuxiang, C. Goh, M. Mcgehee, MRS Bull. 2005, 30, 28
    [2] W. Shockley, Bell Syst. Tech. J. 1949, 28, 435
    [3] D. M. Chapin, C. S. Fuller, G. L. Person, J. Appl. Phys. 1954, 25, 676
    [4] D. Kahng, M. M. Atalla, “Silicon-silicon Dioxide Surface Device” in IRE Device Research Conference, Pittsburgh 1960
    [5] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. Macdiarmid, Phys. Rev. Lett. 1977, 39, 1098
    [6] S. Hayashi, H. Etoh, S. Saito, Jpn. J. Appl. Phys. 1986, 25, 773
    [7] C.W. Tang; S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913
    [8] J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature 1990, 347, 539
    [9] D. Braun, A. J. Heeger, Appl. Phys. Lett. 1991, 58, 1982
    [10] F. Ebisawa, T. Kurosawa, S. Nara, J. Appl. Phys 1983, 54, 3255
    [11] Y. Y. Lin, D. J. Gundlach, S. Nelson, IEEE Electron Device Lett. 1997, 18, 606
    [12] B. O’Regan, M. Gratzel, Nature 1991, 353, 737
    [13] D. Kearns, M. Calvin, J. Chem. Phys. 1958, 29, 950
    [14] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183
    [15] P. Peumans, S. R. Forrest, Appl. Phys. Lett. 2001, 79, 126
    [16] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, 258, 1474
    [17] G. Yu, K. Pakbaz, A. J. Heeger, Appl. Phys. Lett. 1994, 64, 3422
    [18] G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789
    [19] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, Appl. Phys. Lett. 2001, 78, 841
    [20] F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater. 2003, 13, 85
    [21] G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864
    [22] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617
    [23] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789
    [24] L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Appl. Phys. Lett. 2006, 88, 093511
    [25] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, Adv. Mater. 2007, 19, 1551
    [26] G. Li, V. Shrotriya, Y. Yao, J. Huanga, Y. Yang, J. Mater. Chem. 2007, 17, 3126
    [27] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, J. Appl. Phys. 1999, 86, 1688
    [28] Y. Furukawa, M. Akimoto, I. Harada, Synth. Met. 1987, 18, 151
    [29] S.S. Pandey, W. Takashima, S. Nagamatsu, K. Kaneto, IEICE Trans. Electron. 2000, E83-C, 1088
    [30] V. Shrotriya, J. Ouyang, R. J. Tseng, G. Li, Y. Yang, Chem. Phys. Lett. 2005, 411, 138
    [31] D. E. Motaunga, G. F. Malgas, C. J. Arendse, Synth. Met. 2010, 10, 1016

    下載圖示 校內:2015-09-07公開
    校外:2015-09-07公開
    QR CODE