| 研究生: |
羅光哲 Lo, Kuang-Tse |
|---|---|
| 論文名稱: |
調查植入豬牙胚中的誘導型多功能幹細胞和胚胎幹細胞的牙齒相關組織分化狀況及其安全性 An investigation about safety and odontogenic differentiation after iPSC & ESC transplantation in porcine tooth germ |
| 指導教授: |
袁國
Yuan, Kuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 誘導型多功能幹細胞 、齒源性分化 |
| 外文關鍵詞: | induced pluripotent stem cell, odontogenic differentiation |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
幹細胞(stem cells)為一群具有不斷自我更新的能力(self-renewal)以及分化(differentiation)成各類下游成熟組織的細胞。2006年日本學者山中伸彌的團隊發現,將4個特定基因(cMyc, Klf4, Oct3/4, Sox-2)導入至老鼠纖維母細胞中,能使細胞重新獲得分化能力,並將之命名為誘導型多功能幹細胞(induced pluripotent stem cell, iPSC)。這個發現,讓原本胚胎幹細胞(embryonic stem cell, ESC)和成體幹細胞(adult stem cell)遭遇的問題,像是排斥反應、道德問題、細胞老化和細胞來源的限制,迎來了曙光。近年來,部分實驗致力於將誘導型多功能幹細胞分化成齒源性(odontogenic)細胞,包含造釉母細胞(ameloblast)、牙本質母細胞(odontoblast)、牙骨質母細胞(cementoblast)和牙周韌帶細胞(PDL)。然而這些體外實驗都只侷限在細胞層級且缺乏功能性測定;而在少數的老鼠體內實驗中,雖然iPSC在受體的牙胚幫助之下,有成功分化成類牙齒結構,但這些小型動物的研究,除了成功率偏低和仍須受體牙胚協助生長外,其結果是否能直接套用在人體上也依然存疑。此外,相關研究也顯示,比起其他種幹細胞,誘導型多功能幹細胞可能具有較高的致瘤性。故本實驗目的是一系列長期實驗的開端,先去觀察植入豬恆牙牙胚的誘導型多功能幹細胞和胚胎幹細胞,在恆牙發育過程中,齒源性組織的分化狀況,同時也去確認iPSC的安全性,最終希望以iPSC為來源,穩定一致地獲取齒源相關細胞。
在這個定性實驗中,我們先針對培養好的幹細胞進行免疫細胞化學染色(ICC)和免疫組織化學染色(IHC)來驗證其分化能力。接著,針對四隻蘭嶼豬的雙側下顎第四小臼齒恆牙以split-mouth設計,左側將帶有綠色螢光蛋白的豬幹細胞(其中兩隻iPSC,另兩隻ESC)植入其中,無植入細胞的右側則視為控制組,待其七個月萌發後犧牲,期間定期拍攝牙齒x光(第0, 3, 7個月)。在動物犧牲前,我們採集豬隻血液進行血球計數分析以及螢光顯微鏡鏡檢,觀察有無異常。動物犧牲後,除了記錄臨床照片外,我們取得下顎骨和牙齒檢體,經活體螢光影像系統(IVIS)和脫鈣後的IHC染色,去觀察具有綠色螢光的細胞分佈,並以齒源性相關抗體對目標牙齒進行IHC染色來驗證分化的牙齒組織。此外,我們也針對遠端器官的肺臟和軟組織進行IHC染色,檢查這些組織中,是否有綠色螢光的細胞存留。
結果發現,雙側牙齒皆有綠色螢光蛋白表現;而齒源性相關抗體的IHC染色中,也發現植入的幹細胞有成功分化成牙本質母細胞及牙骨質母細胞。臨床檢查則發現這些萌發的牙齒皆可行使正常咀嚼功能,並且沒有外型異常或畸胎瘤產生。另外,在定期拍攝的牙齒x光影像中,也無任何牙齒型態變異。動物犧牲前的血球計數檢驗整體落在正常範圍內,顯示實驗體處於健康狀況。然而,肺臟及軟組織在IHC染色下卻有觀察到綠色螢光蛋白的表現,而血液檢體中也有觀察到綠色螢光的影像,這些現象都說明了幹細胞能夠在血液中移動到遠端組織的能力。我們甚至發現其中一隻植入的iPSC的豬有瀰漫性肺出血的現象,這使得未來iPSC異體移植的應用有潛在的安全疑慮。
我們的實驗說明了iPSC能在豬恆牙牙胚中成功分化成齒源細胞。雖然沒有畸胎瘤產生,但瀰漫性肺出血以及幹細胞經血液移動到遠端組織的能力,讓iPSC的安全議題存在著風險。未來,我們除了重複檢驗iPSC的安全問題之外,也希望能以人源化動物模型(humanized animal model)作為平台,將人類iPSC植入其中,並期待能夠分化出作為臨床再生使用的牙齒相關細胞和組織。
Stem cells are undifferentiated cell with the ability of self-renewal and differentiate into various kinds of specialized cells. In 2006, Yamanaka’s team found 4 specific transcription factors (cMyc, Klf4, Oct3/4, Sox-2) were sufficient to convert mouse fibroblasts to pluripotent stem cells, which was named induced pluripotent stem cells (iPSC). This finding had break down many barriers lie in front of embryonic stem cells (ESC) and adult stem cells, such as immune rejection, ethical problems, cell aging, and inadequate cell source. Many studies had focused on the odontogenic differentiation from iPSC such as odontoblast-like, cementum-like and periodontal ligament (PDL) cells. However, results from these in vitro studies were limited in the transcription level and lacked functional assay for further confirmation. Few mouse studies show iPSC could differentiate into tooth-like structure with the aid of host’s own tooth germ, though the low successful rate and the need of recipient’s tooth germ still remained problems. And these results were not necessarily consistent with human. Furthermore, some studies had even shown that iPSC had higher tumorigenicity than ESC. Therefore, one of our aims in this study was to observe the odontogenic differentiation from the implanted iPSC & ESC in porcine tooth germ. Another aim here was to confirm the safety of iPSC.
In this qualitative experiment, we first examined stem cell pluripotency with immunocytochemistry (ICC) and immunohistochemistry (IHC). And we transplanted porcine stem cell in four Lanyu pigs. Under split mouth design, we implanted porcine stem cells with green florescent protein (GFP) gene expression to left mandibular 4th permanent premolar tooth germ and no cell as control group to right site. (iPSC in 2 pig, ESC in 2 pig). Then, we took dental periapical x-ray films at 0, 3, 7 month. Before animal sacrificed at the 7 month, we drew the blood for whole blood count and fluorescent microscope assay to examine the general health of pigs. After animals sacrificed, we took clinical photo as record. As to the distribution and differentiation of GFP-expressed cells, we obtained the mandible and teeth for In Vivo Imaging System (IVIS) assay and IHC stain. We also performed IHC to soft tissues and lungs for GFP-expressed cell tracking.
The result showed GFP-expressed odontoblasts and cementoblasts were fully developed in transplanted teeth. The dentition was in normal function without any teratoma formation. The x-ray films and whole blood count assay both showed no abnormality. However, we still found GFP-expressed cells in lung and soft tissues. The blood samples also showed green fluorescence under fluorescent microscope, which indicated the migration and homing ability of the stem cells. We even found the diffuse alveolar hemorrhage in one iPS-transplanted recipient.
Our study demonstrated iPSC could differentiate into odontogenic cells in the porcine tooth germ. Although there was no teratoma, the transplanted pig with diffuse alveolar hemorrhage posed a potential threat on clinical use in allografted iPSC. In the future, we hope to use humanized animal model to perform further human iPSC-transplanted study and test the feasibility of odontogenic differentiation from these animals as well as the safety issue. We expect to provide an alternative safety method for gaining regenerated odontogenic tissues from iPS cell in the surrogated animals.
Avior, Y., I. Sagi, and N. Benvenisty. 2016. 'Pluripotent stem cells in disease modelling and drug discovery', Natural Reviews Molecular Cell Biology, 17: 170-82.
Azuma, K., and S. Yamanaka. 2016. 'Recent policies that support clinical application of induced pluripotent stem cell-based regenerative therapies. ', Regenerative Therapy, 4: 36-47.
Becker, A. J., Culloch Ea Mc, and J. E. Till. 1963. 'Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells', Nature, 197: 452-4.
Ben-David, U., and N. Benvenisty. 2011. 'The tumorigenicity of human embryonic and induced pluripotent stem cells', Nature Reviews Cancer, 11: 268-77.
Billinton, N., and A. W. Knight. 2001. 'Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence.', Analytical Biochemistry, 291: 175-97.
Brignier, A. C., and A. M. Gewirtz. 2010. 'Embryonic and adult stem cell therapy', Journal Allergy Clinical Immunology, 125: S336-44.
Cai, J., Y. Zhang, P. Liu, S. Chen, X. Wu, Y. Sun, A. Li, K. Huang, R. Luo, L. Wang, Y. Liu, T. Zhou, S. Wei, G. Pan, and D. Pei. 2013. 'Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells', Cell Regeneration (Lond), 2: 6.
Chute, J. P. 2006. 'Stem cell homing', Current Opinion in Hematology, 13: 399-406. Diekwisch, T. G. 2001. 'The developmental biology of cementum', The International
Journal of Developmental Biology, 45: 695-706.
Evans, M. J., and M. H. Kaufman. 1981. 'Establishment in culture of pluripotential cells from mouse embryos', Nature, 292: 154-6.
Fortier, L. A. 2005. 'Stem cells: classifications, controversies, and clinical applications',
Veterinary Surgery, 34: 415-23.
Fu, X. 2014. 'The immunogenicity of cells derived from induced pluripotent stem cells.',
Cellular and molecular immunology, 11: 14-16.
Fusaki, N., B. A. N. Hiroshi, A. Nishiyama, K. Saeki, and M. Hasegawa. 2009. 'Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome.', Proceedings of the Japan Academy, 85: 348-62.
Harding, J., R. M. Roberts, and O Mirochnitchenko. 2013. 'Large animal models for stem cell therapy. ', Stem cell research and therapy, 4: 23.
Hou, P., Y. Li, X. Zhang, C. Liu, J. Guan, H. Li, T. Zhao, J. Ye, W. Yang, K. Liu, J. Ge, J. Xu, Q. Zhang, Y. Zhao, and H. Deng. 2013. 'Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds', Science, 341: 651-4.
Ide, Y., T. Nakahara, M. Nasu, S. Matsunaga, T. Iwanaga, N. Tominaga, and Y. Tamaki. 2013. 'Postnatal mandibular cheek tooth development in the miniature pig based on two-dimensional and three-dimensional X-ray analyses', Anatomic Record (Hoboken), 296: 1247-54.
Inanc, B., A. E. Elcin, E. Unsal, K. Balos, A. Parlar, and Y. M. Elcin. 2008.'Differentiation of human embryonic stem cells on periodontal ligament fibroblasts in vitro', Artificial Organs, 32: 100-9.
Jia, F., K. D. Wilson, N. Sun, D. M. Gupta, M. Huang, Z. Li, N. J. Panetta, Z. Y. Chen, R. C. Robbins, M. A. Kay, M. T. Longaker, and J. C. Wu. 2010. 'A nonviral minicircle vector for deriving human iPS cells', Nature Methods, 7: 197-9.
Kaji, K., K. Norrby, A. Paca, M. Mileikovsky, P. Mohseni, and K. Woltjen. 2009.
'Virus-free induction of pluripotency and subsequent excision of reprogramming factors', Nature, 458: 771-5.
Kang, H. K., S. Roh, G. Lee, S. D. Hong, H. Kang, and B. M. Min. 2008. 'Osteogenic potential of embryonic stem cells in tooth sockets', International Journal of Molecular Medicine, 21: 539-44.
Keller, G. M. 1995. 'In vitro differentiation of embryonic stem cells', Current Opinion in Cell Biology, 7: 862-9.
Kim, D., C. H. Kim, J. I. Moon, Y. G. Chung, M. Y. Chang, B. S. Han, S. Ko, E. Yang, K. Y. Cha, R. Lanza, and K. S. Kim. 2009. 'Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins', Cell Stem Cell, 4: 472-6.
Laird, D. J., U. H. von Andrian, and A. J. Wagers. 2008. 'Stem cell trafficking in tissue development, growth, and disease', Cell, 132: 612-30.
Lara, A. R., and M. I. Schwarz. 2010. 'Diffuse alveolar hemorrhage.', CHEST Journal, 137: 1164-71.
Lewis, I. D., T. DeFor, and D. J. Weisdorf. 2000. 'Increasing incidence of diffuse alveolar hemorrhage following allogeneic bone marrow transplantation: cryptic etiology and uncertain therapy', Bone Marrow Transplant, 26: 539-43.
Liao, Y. J., C. H. Liao, J. W. Liao, K. Yuan, Y. Z. Liu, and Y. S. Chen. 2014. 'Establishment and characterization of novel porcine induced pluripotent stem cells expressing hrGFP.', Journal of Stem Cell Research and Therapy, 4.208: 2.
Liu, L., Liu, Y. F., Zhang, J., Duan, Y. Z., & Jin, Y. 2016. 'Ameloblasts serum‐free conditioned medium: bone morphogenic protein 4‐induced odontogenic differentiation of mouse induced pluripotent stem cells'. Journal of tissue engineering and regenerative medicine, 10(6): 466-474.
Maeda, T., M. J. Lee, G. Palczewska, S. Marsili, P. J. Tesar, K. Palczewski, and A. Maeda. 2013. ' Retinal pigmented epithelial cells obtained from human induced pluripotent stem cells possess functional visual cycle enzymes in vitro and in vivo.', Journal of Biological Chemistry, 288: 34484-93.
Marawar, P. P., A. Mani, S. Sachdev, N. K. Sodhi, and A. Anju. 2012. 'Stem cells in dentistry: An overview.', Pravara Medical Review, 4(2): 11-15.
Martin, G. R. 1981. 'Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells', Proceeding of National Academy of Sciences of United States of America, 78: 7634-8.
Morrison, S. J., N. M. Shah, and D. J. Anderson. 1997. 'Regulatory mechanisms in stem cell biology', Cell, 88: 287-98.
Nakagawa, M., Y. Taniguchi, S. Senda, N. Takizawa, T. Ichisaka, K. Asano, A. Morizane, D. Doi, J. Takahashi, M. Nishizawa, Y. Yoshida, T. Toyoda, K. Osafune, K. Sekiguchi, and S. Yamanaka. 2014. 'A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells', Scientific Reports, 4: 3594.
Navarro-Alvarez, N., A. Soto-Gutierrez, T. Yuasa, T. Yamatsuji, Y. Shirakawa, T. Nagasaka, S. D. Sun, M. S. Javed, N. Tanaka, and N. Kobayashi. 2008. 'Long-term culture of Japanese human embryonic stem cells in feeder-free conditions', Cell Transplant, 17: 27-33.
Ning, F., Y. Guo, J. Tang, J. Zhou, H. Zhang, W. Lu, and Y. Jin. 2010. 'Differentiation of mouse embryonic stem cells into dental epithelial-like cells induced by ameloblasts serum-free conditioned medium. ', Biochemical and Biophysical Research Communications, 394: 342-47.
Nitta, K. R., S. Takahashi, Y. Haramoto, M. Fukuda, Y. Onuma, and M. Asashima. 2006. 'Expression of sox1 during xenopus early embryogenesis', Biochemical and Biophysical Research Communications, 351: 287-93.
Ozeki, N., M. Mogi, R. Kawai, H. Yamaguchi, T. Hiyama, K. Nakata, and H. Nakamura. 2013. 'Mouse-induced pluripotent stem cells differentiate into odontoblast-like cells with induction of altered adhesive and migratory phenotype of integrin. ', PLoS One, 8(11).
Ramalho-Santos, M., and H. Willenbring. 2007. 'On the origin of the term "stem cell"', Cell Stem Cell, 1(1): 35-8.
Ratajczak, M. Z. 2015. 'A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking', Leukemia, 29: 776-82.
Rodriguez-Piza, I., Y. Richaud-Patin, R. Vassena, F. Gonzalez, M. J. Barrero, A. Veiga, A. Raya, and J. C. Izpisua Belmonte. 2010. 'Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions', Stem Cells, 28: 36-44.
Schnieke, A. E., A. J. Kind, W. A. Ritchie, K. Mycock, A. R. Scott, M. Ritchie, I. Wilmut, A. Colman, and K. H. Campbell. 1997. 'Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts', Science, 278: 2130-3.
Siminovitch, L., E. A. McCulloch, and J. E. Till. 1963. 'The distribution of colony‐ forming cells among spleen colonies.', Journal of Cellular and Comparative Physiology, 62: 327-36.
Stadtfeld, M., M. Nagaya, J. Utikal, Weir, G., and K. Hochedlinger. 2008. 'Induced pluripotent stem cells generated without viral integration.', Science, 322: 945-49.
Stewart, C. L., P. Kaspar, L. J. Brunet, H. Bhatt, I. Gadi, F. Kontgen, and S. J. Abbondanzo. 1992. 'Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor', Nature, 359: 76-9.
Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. 2007. 'Induction of pluripotent stem cells from adult human fibroblasts by defined factors', Cell, 131: 861-72.
Takahashi, K., and S. Yamanaka. 2006. 'Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors', Cell, 126: 663-76.
Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones. 1998. 'Embryonic stem cell lines derived from human blastocysts', Science, 282: 1145-7.
Till, J. E., and E. A. McCulloch. 1980. 'Hemopoietic stem cell differentiation', Biochimical et Biophysica Acta, 605: 431-59.
Warren, L., P. D. Manos, T. Ahfeldt, Y. H. Loh, H. Li, F. Lau, W. Ebina, P. K. Mandal, Z. D. Smith, A. Meissner, G. Q. Daley, A. S. Brack, J. J. Collins, C. Cowan, T. M. Schlaeger, and D. J. Rossi. 2010. 'Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA', Cell Stem Cell, 7: 618-30.
Wen, Y., F. Wang, W. Zhang, Y. Li, M. Yu, X. Nan, L. Chen, W. Yue, X. Xu, and X. Pei. 2012. 'Application of induced pluripotent stem cells in generation of a tissue-engineered tooth-like structure', Tissue Engineering Part A, 18: 1677-85.
Xie, X., A. Hiona, A. S. Lee, F. Cao, M. Huang, Z. Li, A. Cherry, X. Pei, and J. C. Wu. 2011. 'Effects of long-term culture on human embryonic stem cell aging', Stem Cells and Development, 20: 127-38.
Yang, J. R., C. W. Hsu, S. C. Liao, Y. T. Lin, L. R. Chen, and K. Yuan. 2013. 'Transplantation of embryonic stem cells improves the regeneration of periodontal furcation defects in a porcine model', Journal of Clinical Periodontology, 40: 364-71.
Yang, J. R., Y. L. Shiue, C. H. Liao, S. Z. Lin, and L. R. Chen. 2009. 'Establishment and characterization of novel porcine embryonic stem cell lines expressing hrGFP', Cloning Stem Cells, 11: 235-44.
Yin, X., Y. Li, J. Li, P. Li, Y. Liu, J. Wen, and Q. Luan. 2016. 'Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells', Biochemical and Biophysical Research Communications, 473: 726-32.
Ying, Q. L., J. Nichols, I. Chambers, and A. Smith. 2003. 'BMP induction of Id proteins
suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration
with STAT3', Cell, 115: 281-92.
Yoshida, K., J. Sato, R. Takai, O. Uehara, Y. Kurashige, M. Nishimura, and Y. Abiko.
2015. 'Differentiation of mouse iPS cells into ameloblast-like cells in cultures using
medium conditioned by epithelial cell rests of Malassez and gelatin-coated dishes. ',
Medical molecular morphology, 48: 138-45.
Yu, J., M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J.
Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, Slukvin, II, and J. A. Thomson. 2007. 'Induced
pluripotent stem cell lines derived from human somatic cells', Science, 318: 1917-20.
Zhao, T., Z. N. Zhang, Z. Rong, and Y. Xu. 2011. 'Immunogenicity of induced
pluripotent stem cells. ', Nature, 474: 212-15.
Zhao, W., X. Ji, F. Zhang, L. Li, and L. Ma. 2012. 'Embryonic stem cell markers',
Molecules, 17: 6196-236.
校內:2022-07-31公開