| 研究生: |
柯瀚斌 Ko, Han-Bin |
|---|---|
| 論文名稱: |
二次邊界元素之二維磁電彈分析 Quadratic Boundary Element for Two dimensional Magneto-Electro-Elastic Analysis |
| 指導教授: |
胡潛濱
Hwu, Chyanbin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 磁電彈材料 、奇異積分 、邊界元素法 |
| 外文關鍵詞: | magneto-electro-elastic material, weakly singular integral, boundary element analysis |
| 相關次數: | 點閱:151 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要探討在使用二次元素進行邊界元素分析時,所遭遇的弱奇異積分問題。藉由推導邊界元素分析之基本解方程式,得到弱奇異積分產生的來源,並進行方程式的修正,使問題得到解決。再將此方法擴充至磁電彈材料,使磁電彈材料在進行分析時,可以得到更為精確的結果。
本文將修正師門程式AEPH中關於邊界元素分析的二次元素部分,使得二次邊界元素分析可得到精確的結果,並比較處理先後之結果差別。
This paper discusses the problems of weakly singular integral with quadratic element in boundary element method (BEM). According to the fundamental solutions of BEM, we can find the reason of weakly singular integral and propose the methods to solve the weakly singular integral problems. We can also use these methods to analyze the problems with the magneto-electro-elastic materials. In this paper, we modify the part of quadratic element of our research group program “AEPH” and compare the modified result with unmodified result.
[1] Suchtelen, J. V., “Product Properties: A New Application of Composite Materials,” Philips Research Reports, Vol.27, No.1, pp. 28-37, 1972
[2] 林睿哲,“尖晶石CoFe2O4 與鈣鈦礦Pb(Zr, Ti)O3 積層複合薄膜的多重鐵性與磁電耦合特性研究”,博士論文,國立清華大學材料科學工程學系,2008
[3] Nan, C. W., “Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases,” Phys. Rev. B 50, pp. 6082–6088, 1994.
[4] Marco, A., “Magnetoelectric Effect in Piezoelectric /Magnetostrictive Multilayer (2-2) Composites,” Journal of Intelligent Material Systems and Structures, 1994 pp. 501-513, 1994.
[5] Benveniste, Y., “Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases,” Phys. Rev. B 51, pp16424–16427, 1995.
[6] Hwu, C, “Some explicit expressions of extended Stroh formalism for two-dimensional piezoelectric anisotropic elasticity,”International Journal of Solids and Structures, Vol.45, Issue16, pp.4460-4473,2008
[7] 張玉虹,“磁電彈材料邊界元素設計”,碩士論文,國立成功大學航太工程研究所,2011
[8] 廖智勇,“含多孔、多裂縫與多異質之複合層板邊界元素分析”,碩士論文, 國立成功大學航空太空工程研究所,1992
[9] Lu, S. and Ye, T. Q., “Direct Evaluation of Singular Integrals In Elastoplastic Analysis By The Boundary Element Method,”International Journal For Numerical Methods In Engineering,vol.32,pp295-311,1991
[10] Huang, Q. and Cruse, T. A., “Some Note on Singular Integral Techniques in Boundary Element Analysis,” International Journal For Numerical Methods In Engineering,vol.36,pp2643-2659,1993
[11] Ma, H. and Kamiya, N., “Distance transformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method,”Engineering Analysis with Boundary Elements,vol26,pp329-339,2002
[12] Beer, G. and Smith, I. and Duenser, C., “The Boundary Element Method with Programming,”SpringerWienNewYork,2008
[13] Hwu, C. and Hsu, C. L. and Chen, W. R., “Corrective Evaluation of Multi-valued Complex Functions for Anisotropic Elasticity,” published online in Mathematics and Mechanics of Solids, 2017
[14] Hwu, C., “Anisotropic Elastic Plates,” Springer, New York, 2010
[15] 翁國華,“異向性彈性力學解析解與邊界元素之視窗軟體設計”,碩士論文, 國立成功大學航太工程研究所, 2014
[16] Stroud, A. H. and Secrest, D.“Gaussian Quadrature Formulas,”Prentice-Hall, Englewood Cliffs,1966