簡易檢索 / 詳目顯示

研究生: 張辰
Jang, Chen
論文名稱: 高效能電容式壓電壓力感測器之研究
Investigation into high performance capacitive piezotronic pressure sensor
指導教授: 劉全璞
Liu, Chuan-Pu
共同指導教授: 王超鴻
Wang, Chao-hung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 83
中文關鍵詞: 壓電效應蕭特基介面電容-電壓量測電流-電壓量測動態觀測
外文關鍵詞: Piezoelectric effect, Schottky interface, C-V measurement, I-V measurement, Dynamic observation
相關次數: 點閱:68下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來缺電問題日益嚴重,伴隨疫情、戰爭、能源轉型,綠能產業的發展逐漸獲得重視,許多研究致力於研發節能、儲能、以及產能的裝置,而無論是作為壓電奈米發電機、或是壓電閘極電晶體元件,都是值得作深入研究應用的領域。
    然而為了改進裝置效能,對於壓電效應的原理探討和測量也是不可或缺的,利用先輩的壓電效應領域研究作為基礎,結合實際量測趨勢,解釋元件中的變化,最終應用於壓力感測元件。
    本研究選擇透明玻璃作為基板,以利之後可以延伸至光電效應之量測,而壓電薄膜材料選擇具有寬能隙(3.3eV)和c軸擇優取向的氧化鋅(ZnO)作為材料,配合一邊選擇歐姆接觸(Ohmic contact)的氧化銦錫(ITO)電極,另一邊選擇鉑(Pt)的電極作為蕭特基接觸(Schottky contact)的電極,以利觀察氧化鋅薄膜的壓電效應作用在元件上造成的變化。
    利用SEM觀察材料表面平整度以及氧化鋅的膜厚,和利用XRD分析氧化鋅結晶性,以及結晶方向。並利用電流-電壓量測(I-V)、電容-電壓量測(C-V)、電容-時間(C-t)、和電流-時間(I-t)等電性分析得到的數據作探討和比較,配合能帶圖以及等效電路的幫助,了解材料受不同力量時,因壓電效應在氧化鋅表面累積的壓電電荷,造成的蕭特基能障(Schottky barrier height)改變、電流輸出、電壓輸出、電容變化。最後配合C-V的結果,研究基於元件構造所假設的等效電路,以及產生的壓電電容和空乏層形成之電容的串並聯情形。並探討作為電容式壓電感測器之表現和可行性,以及具有較大漏電流元件對於壓力感測上之影響。

    This work aims to gain deep understanding of piezotronics devices operations based on ZnO Schottky diodes. The devices start with ZnO thin film deposition by sputtering on ITO/Glass substrate followed by Pt top electrode deposition to form Schottky contact. In order to visualize the operational mechanism of piezotronics in real time involving electron transportation inside ZnO while applying external forces, I-V, C-V, I-t, V-t, C-t methodologies are adopted. By further analyzing I-V and C-V curves, carrier dynamics and important parameters across the Schottky junction can be derived. Accordingly, we can investigate how piezo-charges are generated in response to external forces and the interplay between the induced piezo-potential and Schottky contact formation at the interface through dynamic carrier transport. Furthermore, the dynamic response mechanism of free carriers with charged ions from piezotronics effect can be investigated by measuring CV curves with time. Understanding the mechanism fully could help us improve the performance of our piezotronics devices.

    摘要 I Extended Abstract II 誌謝 IX 目錄 X 圖目錄 XIII 表目錄 XIX 第一章 序論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 壓電元件發展 3 2.1 氧化鋅 3 2.1.1 物理性質 3 2.1.2 晶體結構 4 2.2 壓電元件 5 2.2.1 奈米材料壓電性質 5 2.2.2 奈米壓電發電機 8 2.2.3 直流交流奈米發電機 12 2.2.4 半導體壓電元件應用 14 2.2.5 半導體壓電薄膜 20 2.3 壓力感測器 22 2.3.1 壓阻式壓力感測器 (Piezoresistive sensors) 22 2.3.2 壓電式壓力感測器 (Piezoelectric sensors) 23 2.3.3 電容式壓力感測器 (Capacitive sensors) 24 第三章 半導體與壓電元件理論 26 3.1 半導體元件 26 3.1.1 Schottky Contact機制 26 3.1.2 Schottky Diode電流與電壓的關係 28 3.1.3 Schottky Diode電容與電壓的關係 34 3.1.4 Ohmic Contact機制 39 3.1.5空間電荷限制電流(Space-charge-limited Current) 40 3.2 半導體壓電元件 42 3.2.1 半導體壓電元件原理 42 第四章 實驗步驟和分析方式 47 4.1 實驗設計和流程 47 4.2 試片製備、合成 49 4.2.1 基板清洗 49 4.2.2 薄膜濺鍍 49 4.3 壓電元件製作 50 4.4 材料分析儀器 51 4.4.1 電性量測 51 4.4.1.1 電流-電壓量測 51 4.4.1.2 電流-時間量測 51 4.4.1.3 電容-電壓量測 52 4.4.1.4 電容-時間量測 52 4.4.2 高解析掃描試電子顯微鏡(High Resolution Scanning Electron Microscopy, HR-SEM) 53 4.4.3 X光繞射儀 (X-ray Diffraction, XRD) 53 4.4.4 原子力顯微鏡 (Atomic Force Microscopy, AFM) 53 4.4.5 壓電原子力顯微鏡 (Piezo-response Force Microscopy, PFM) 54 第五章 實驗結果與討論 55 5.1 表面形貌與成分分析 55 5.2 晶體結構分析 57 5.3 壓電性質分析 58 5.4 電性分析 61 5.4.1 電流-電壓量測(I-V) 61 5.4.2 電容-電壓量測(C-V) 69 5.4.3 電流-時間量測(I-t) 75 5.4.4 電容-時間量測(C-t) 76 第六章 結論 78 第七章 未來計畫 79 第八章 參考文獻 79

    [1] Amin, G., ZnO and CuO nanostructures: low temperature growth, characterization, their optoelectronic and sensing applications. Linköping University Electronic Press. 2012.
    [2] Zhou, J., N.S. Xu, and Z.L. Wang, Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Advanced Materials. 18(18): p. 2432-2435. 2006.
    [3] Wang, Z.L., Zinc oxide nanostructures: growth, properties and applications. Journal of physics: condensed matter. 16(25): p. R829. 2004.
    [4] Li, S., The atomic struture of inversion domains and grain boundaries in wurtzite semonconductors: an investigation by atomistic modelling and high resolution transmission electron microscopy. Normandie Université. 2018.
    [5] Choi, M.Y., et al., Mechanically powered transparent flexible charge‐generating nanodevices with piezoelectric ZnO nanorods. Advanced Materials. 21(21): p. 2185-2189. 2009.
    [6] Shah, N.A., et al., Synthesis of Metal Oxide Semiconductor Nanostructures for Gas Sensors. Gas Sensors. 1: p. 101. 2019.
    [7] Wang, Z.L. and W. Wu, Piezotronics and piezo-phototronics: fundamentals and applications. National Science Review. 1(1): p. 62-90. 2014.
    [8] Lippmann, G., Principe de la conservation de l'électricité, ou second principe de la théorie des phénomènes électriques. Journal de Physique Théorique et Appliquée. 10(1): p. 381-394. 1881.
    [9] Huo, L., et al., Smart washer—A piezoceramic-based transducer to monitor looseness of bolted connection. Smart Materials and Structures. 26(2): p. 025033. 2017.
    [10] Von Hippel, A., et al., High dielectric constant ceramics. Industrial & Engineering Chemistry. 38(11): p. 1097-1109. 1946.
    [11] Haertling, G.H., Ferroelectric ceramics: history and technology. Journal of the American Ceramic Society. 82(4): p. 797-818. 1999.
    [12] Priya, S., et al., A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvesting and Systems. 4(1): p. 3-39. 2017.
    [13] Wang, Z.L. and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 312(5771): p. 242-246. 2006.
    [14] Wang, X., et al., Direct-current nanogenerator driven by ultrasonic waves. Science. 316(5821): p. 102-105. 2007.
    [15] Wang, Z.L., Nanogenerators for self-powered devices and systems. Georgia Institute of Technology. 2011.
    [16] Park, H.K., et al., Charge‐generating mode control in high‐performance transparent flexible piezoelectric nanogenerators. Advanced Functional Materials. 21(6): p. 1187-1193. 2011.
    [17] Kumar, B. and S.-W. Kim, Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy. 1(3): p. 342-355. 2012.
    [18] Gao, Y. and Z.L. Wang, Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano letters. 7(8): p. 2499-2505. 2007.
    [19] Wang, X., et al., Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano letters. 6(12): p. 2768-2772. 2006.
    [20] Zhou, J., et al., Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano letters. 8(11): p. 3973-3977. 2008.
    [21] Wang, L., et al., 2D piezotronics in atomically thin zinc oxide sheets: Interfacing gating and channel width gating. Nano Energy. 60: p. 724-733. 2019.
    [22] Zhou, J., et al., Flexible piezotronic strain sensor. Nano letters. 8(9): p. 3035-3040. 2008.
    [23] Wu, W., Y. Wei, and Z.L. Wang, Strain‐gated piezotronic logic nanodevices. Advanced Materials. 22(42): p. 4711-4715. 2010.
    [24] Yu, R., et al., GaN nanobelt-based strain-gated piezotronic logic devices and computation. ACS nano. 7(7): p. 6403-6409. 2013.
    [25] Zhao, Z., et al., Piezotronic Effect in Polarity-Controlled GaN Nanowires. ACS Nano. 9(8): p. 8578-8583. 2015.
    [26] Wang, C.-H., et al., Effects of Free Carriers on Piezoelectric Nanogenerators and Piezotronic Devices Made of GaN Nanowire Arrays. Small. 10(22): p. 4718-4725. 2014.
    [27] Ku, N.-J., et al., Crystal Face-Dependent Nanopiezotronics of an Obliquely Aligned InN Nanorod Array. Nano Letters. 12(2): p. 562-568. 2012.
    [28] Wang, C.-H., et al., Ultrasensitive Thin-Film-Based Al<i><sub>x</sub></i>Ga<sub>1−<i>x</i></sub>N Piezotronic Strain Sensors via Alloying-Enhanced Piezoelectric Potential. Advanced Materials. 27(40): p. 6289-6295. 2015.
    [29] Chen, Y.-Y., et al., Self-powered n-MgxZn1-xO/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect. Nano Energy. 11: p. 533-539. 2015.
    [30] Wen, X., W. Wu, and Z.L. Wang, Effective piezo-phototronic enhancement of solar cell performance by tuning material properties. Nano Energy. 2(6): p. 1093-1100. 2013.
    [31] Song, M., et al., Flexible Li-doped ZnO piezotronic transistor array for in-plane strain mapping. Nano Energy. 55: p. 341-347. 2019.
    [32] Jung, W.-S., et al., High output piezo/triboelectric hybrid generator. Scientific reports. 5(1): p. 1-6. 2015.
    [33] Singh, R., et al. A silicon piezoresistive pressure sensor. in Proceedings First IEEE International Workshop on Electronic Design, Test and Applications' 2002. 2002. IEEE.
    [34] 蔡宗亨, 曹., 電容與電阻感測器與讀取電路系統整合設計. 科儀新知. p. 26-39. 民106.
    [35] Kim, S.-R., J.-H. Kim, and J.-W. Park, Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks. ACS applied materials & interfaces. 9(31): p. 26407-26416. 2017.
    [36] Chakrapani, V., Semiconductor Junctions, Solid-Solid Junctions, in Encyclopedia of Applied Electrochemistry, G. Kreysa, K.-i. Ota, and R.F. Savinell, Editors., Springer New York: New York, NY. p. 1882-1893. 2014.
    [37] Neamen, D.A., Semiconductor physics and devices : basic principles. 2012, New York, N.Y: McGraw-Hill. 2012.
    [38] Al-Ahmadi, N.A., Schottky barrier inhomogeneities at the interface of different epitaxial layer thicknesses of n-GaAs/Ti/Au/Si: Al0. 33Ga0. 67As. Heliyon. 6(9): p. e04852. 2020.
    [39] Cheung, S. and N. Cheung, Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied physics letters. 49(2): p. 85-87. 1986.
    [40] Aydoğan, Ş., et al., Electrical characterization of Au/n-ZnO Schottky contacts on n-Si. Journal of Alloys and Compounds. 476(1-2): p. 913-918. 2009.
    [41] Chen, K.-H., et al., Schottky emission distance and barrier height properties of bipolar switching Gd: SiOx RRAM devices under different oxygen concentration environments. Materials. 11(1): p. 43. 2017.
    [42] Grillo, A. and A. Di Bartolomeo, A current–voltage model for double Schottky barrier devices. Advanced Electronic Materials. 7(2): p. 2000979. 2021.
    [43] Tsiarapas, C., D. Girginoudi, and N. Georgoulas, Electrical characteristics of Pd Schottky contacts on ZnO films. Materials science in semiconductor processing. 17: p. 199-206. 2014.
    [44] Yakuphanoglu, F. and S. Okur, Analysis of electronic parameters and interface states of boron dispersed triethanolamine/p-Si structure by AFM, I–V, C–V–f and G/ω–V–f techniques. Microelectronic Engineering. 87(1): p. 30-34. 2010.
    [45] Rhoderick, E.H.W.R.H., Metal-semiconductor contacts. 1988, Oxford [England]; New York: Clarendon Press ; Oxford University Press. 1988.
    [46] Khan, A., et al., Study of transport properties of copper/zinc-oxide-nanorods-based Schottky diode fabricated on textile fabric. Semiconductor Science and Technology. 28(12): p. 125006. 2013.
    [47] Gelderman, K., L. Lee, and S. Donne, Flat-band potential of a semiconductor: using the Mott–Schottky equation. Journal of chemical education. 84(4): p. 685. 2007.
    [48] Yim, C., N. McEvoy, and G.S. Duesberg, Characterization of graphene-silicon Schottky barrier diodes using impedance spectroscopy. Applied Physics Letters. 103(19): p. 193106. 2013.
    [49] Semple, J., et al., Flexible diodes for radio frequency (RF) electronics: a materials perspective. Semiconductor Science and Technology. 32(12): p. 123002. 2017.
    [50] Chattopadhyay, P. and B. Raychaudhuri, Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes. Solid-state electronics. 36(4): p. 605-610. 1993.
    [51] Lee Stauffer, K.I.I. Fundamentals of Semiconductor C-V Measurements. 2009.
    [52] Metal-Semiconductor Contacts, in Physics of Semiconductor Devices. p. 134-196. 2006.
    [53] Roccaforte, F., F. La Via, and V. Raineri, Ohmic contacts to SiC. International journal of high speed electronics and systems. 15(04): p. 781-820. 2005.
    [54] Mott, N.F. and R.W. Gurney, Electronic processes in ionic crystals. 1948: Clarendon Press. 1948.
    [55] Zhang, X.-G. and S.T. Pantelides, Theory of space charge limited currents. Physical review letters. 108(26): p. 266602. 2012.
    [56] Lampert, M.A., Simplified theory of space-charge-limited currents in an insulator with traps. Physical Review. 103(6): p. 1648. 1956.
    [57] Röhr, J.A. and R.C. MacKenzie, Analytical description of mixed ohmic and space-charge-limited conduction in single-carrier devices. Journal of Applied Physics. 128(16): p. 165701. 2020.
    [58] Çaldıran, Z., et al., Space charge limited current mechanism (SCLC) in the graphene oxide–Fe3O4 nanocomposites/n-Si heterojunctions. Journal of Alloys and Compounds. 631: p. 261-265. 2015.
    [59] Wang, Z.L., Nanopiezotronics. Advanced Materials. 19(6): p. 889-892. 2007.
    [60] Zhang, Y., Y. Liu, and Z.L. Wang, Fundamental theory of piezotronics. Advanced Materials. 23(27): p. 3004-3013. 2011.
    [61] Sze, S.M., Y. Li, and K.K. Ng, Physics of semiconductor devices. 2021: John wiley & sons. 2021.
    [62] Liu, Y., et al., Fundamental theories of piezotronics and piezo-phototronics. Nano Energy. 14: p. 257-275. 2015.
    [63] Wang, L. and Z.L. Wang, Advances in piezotronic transistors and piezotronics. Nano Today. 37: p. 101108. 2021.
    [64] Zheng, J., et al., CV characteristics of piezotronic metal-insulator-semiconductor transistor. Science Bulletin. 65(2): p. 161-168. 2020.
    [65] Derry, G. and Z. Ji-Zhong, Work function of Pt (111). Physical Review B. 39(3): p. 1940. 1989.
    [66] Gordon, P.G., et al., Work function of doped zinc oxide films deposited by ALD. Journal of Materials Research. 35(7): p. 756-761. 2020.
    [67] Park, Y., et al., Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Applied physics letters. 68(19): p. 2699-2701. 1996.
    [68] Hussain, B., et al., Electron affinity and bandgap optimization of zinc oxide for improved performance of ZnO/Si heterojunction solar cell using PC1D simulations. Electronics. 8(2): p. 238. 2019.
    [69] KEYENCE. 表面粗糙度的參數. Available from: https://www.keyence.com.tw/ss/products/microscope/roughness/line/parameters.jsp 2022.
    [70] Tombak, A., et al., The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications. Results in Physics. 5: p. 314-321. 2015.

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE