簡易檢索 / 詳目顯示

研究生: 陳品均
Chen, Pin-Jun
論文名稱: 應用於肌力訓練之穿戴式肌電感測裝置設計與使用性研究
Product Design and Usability Evaluation: Application of sEMG in Wearable Device on Muscle Training
指導教授: 林彥呈
Lin, Yang-Cheng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 115
中文關鍵詞: 表面肌電訊號穿戴式裝置上下肢高齡者使用性
外文關鍵詞: sEMG, Wearable devices, Upper and lower limbs, Elderly, Usability
相關次數: 點閱:121下載:38
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 衰弱症為常見的不正常老化的現象,加速骨骼肌肉的流失,導致高齡者跌倒失能的機率增加。然而,肌力的復健需要長期到醫療院所進行治療及評估,不僅降低高齡者生活品質,也造成家屬的生活及財力負擔。且隨著高齡人口持續增加,將面臨醫療人員不足的窘況。為了因應以上問題,智慧穿戴裝置應用在復健醫療產業於居家老人照護領域也開始崛起。而目前市面上還未有專門為高齡者設計之應用於居家肌力訓練,感測特定肌肉訊號的穿戴裝置。
    因此本研究將設計應用於高齡者上下肢肌力訓練感測表面肌電訊號之穿戴裝置。透過相關文獻探討,了解上下肢人因工程學、穿戴裝置設計基本要素以及使用性評估量表,作為設計基礎。本研究之研究方法及實驗分為三個部分,修改Nielsen等人提出之十項使用性原則為本研究穿戴裝置設計準則,以專家訪談及高齡者行為研究結果作為設計參考,進行穿戴裝置設計,最後透過高齡者使用性研究,以SUS使用性評估問卷及半結構式訪談,了解對設計之穿戴裝置的使用性及意願性。接著將得到的使用性分數以Three-way ANOVA、Two-way ANOVA、Mann-Whitney U Test及One-way ANOVA逐步的進行統計分析,並整理半結構式訪談內容。
    從結果發現,女性60-69歲的高齡者更能夠接受在居家復健過程中使用設計之穿戴裝置,認為能夠在居家進行復健同時能夠得到醫療回饋是很方便的型式。在下肢穿戴裝置設計上,因為貼合皮膚的程度影響穿戴時的舒適度,建議增加調整尺寸的幅度,並添加防滑動的材質。上肢穿戴裝置設計上,穿戴步驟影響整體使用的順暢度,建議將位於不同上肢位置的穿戴步驟,以圖示描述的更清楚,並增加感測器放置方向的防呆設計,降低穿戴錯誤的機率。最後根據研究結果在穿戴設計上給予未來發展建議,以目前設計之穿戴裝置來說,在肌力訓練時不會造成不適感,建議未來朝向單一穿戴裝置符合感測多部位肌電訊號為導向進行設計。期望未來能夠加速普及應用於高齡者居家上下肢肌力訓練接收訊號,提供醫療人員做診療參考使用。

    As muscle and strength decline with age, the risks of falling down and becoming disabled increase for the elderly. However, rehabilitation for patients through long-term treatments and assessments in medical institutions takes a long time. It reduces the elderly people’s quality of life and causes a burden on their living and finances on their families. Therefore, the goal of this study is to design wearable sEMG devices for muscle rehabilitation. We aim to help the elderly train their lower and upper limbs at home and simultaneously collect physiological signals through training for remote medical diagnosis.
    The methods of the study are divided into three parts. First, Nielsen and the others proposed that the ten usability principles be modified as the wearable sEMG devices design guidelines. Second, the design direction is established through focus group interviews and the wearing behavior experiment of elderly people. Third, we evaluated the designed wearable sEMG devices through a usability evaluation experiment and semi-structured interview to understand their usability and feasibility. Then, the usability scores are gradually analyzed by Three-way ANOVA, Two-way ANOVA, Mann-Whitney U test, and One-way ANOVA.
    From the results, we found that women aged 60-69 are more acceptable to use the designed wearable sEMG devices rehabilitation at home. In the design of the lower limb wearable sEMG device, appropriate wearing size affects the wearing comfort of users. It is necessary to increase the size of the adjustment. In the design of the upper limb wearable devices, the wearing steps affect the ease of wearing by the user. We recommend that the wearing steps located in different upper limb positions be described more clearly with diagrams and add a fool-proof design for the placement direction of the sensor to reduce wearing errors. The wearable devices currently designed will not cause users uncomfortable during muscle strength training. We recommend that the wearable device should meet the requirements of sensing multi-segment myoelectric signals in the future. We hope that in the future, it will be able to accelerate the popularization of the application of the upper and lower limbs muscle strength training of the elderly at home to receive signals and provide medical diagnosis and treatment.

    致謝 i 摘要 ii PRODUCT DESIGN AND USABILITY EVALUATION: APPLICATION OF SEMG IN WEARABLE DEVICE ON MUSCLE TRAINING iii TABLE OF CONTENTS v LIST OF TABLES viii LIST OF FIGURES x LIST OF SYMBOLS AND ABBREVIATIONS xii CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Motivation 3 1.3 Purpose 5 1.4 Overview of this Study 6 CHAPTER 2 literature review 9 2.1 Frailty 9 2.1.1 Introduction to frailty 9 2.1.2 Frailty assessment scale 12 2.2 Human upper and lower limb characteristics 14 2.2.1 Types of human joint activities 14 2.2.2 Anthropometry 15 2.2.3 Discussion on upper limb skeletal muscle and function 16 2.2.4 Discussion on lower limb skeletal muscle and function 18 2.2.5 Common upper and lower limb injuries of the elderly 20 2.3 Wearable devices 21 2.3.1 Development status and future trends of wearable devices 21 2.3.2 Application of wearable devices to the elderly 23 2.3.3 Human factors design of wearable device 25 2.3.4 sEMG and nine-axis inertial sensor combined with the wearable device 25 2.4 Usability evaluation 26 2.4.1 Usability definition 27 2.4.2 Usability evaluation scale 28 2.4.3 Evaluation of the usability of wearable devices for the elderly 32 2.4.4 Summary 33 CHAPTER 3 METHODS 34 3.1 Principles of usability evaluation 34 3.1.1 Clinical application of sEMG 34 3.1.2 Modification of usability principle 35 3.2 The wearable sEMG devices design process 36 3.2.1 Expert interview 37 3.2.2 The wearing behavior experiment of elderly people 38 3.2.3 Circuit components-muscle sensor 41 3.3 Usability evaluation experiment 42 CHAPTER 4 Wearable sEMG device design process 47 4.1 The design of lower limb wearable sEMG device 47 4.1.1 The research of lower limb wearing behavior 47 4.1.2 The design process of lower limb wearable sEMG device 50 4.2 The design of upper limb wearable sEMG devices 55 4.2.1 The research of upper limb protective gear wearing behavior 55 4.2.2 The design process of upper limb wearable sEMG devices 58 CHAPTER 5 Results and Discussion 67 5.1 Usability Test Result of the Lower Limb Wearable sEMG Device 68 5.1.1 Usability Test Process of the Lower Limb Wearable Device 68 5.1.2 Usability Data Analysis Result of the Lower Limb Wearable sEMG Device 69 5.1.3 The Analysis Result of Semi-Structured Interview of the Lower Limb Wearable sEMG Device 80 5.2 Usability Test Result of the Upper Limb Wearable sEMG Devices 82 5.2.1 Usability Test Process of the Lower Limb Wearable Devices 83 5.2.2 Usability Data Analysis Result of the Upper Limb Wearable sEMG Device 83 5.2.3 The Analysis Result of Semi-Structured Interview of the Upper Limb Wearable sEMG Devices 94 5.3 The Usability Result of the Upper and Lower Limb Wearable sEMG Devices 97 5.4 Expert Feedback 99 5.5 Comprehensive Discussion 99 CHAPTER 6 Conclusion 101 6.1 Research conclusion 101 6.2 Research limitation and suggestion 103 REFERENCES 104 Appendix A SUS Usability Questionnaire for Upper Limbs Wearable sEMG Devices 114 Appendix B SUS Usability Questionnaire for lower Limbs Wearable sEMG Devices 115

    許世昌, 郭純琦, 劉上賓.(2018).新編解剖學. 台北市:永大。[Hu, S. C., Guo, J. C., Liou, S. B. (2018). New Anatomy. Taipei City, Taiwan, ROC: YEONG DAH.]
    衛生福利部.(2016). 長期照顧十年計畫2.0. 取自https://www.mohw.gov.tw/dl-46355-2d5102fb-23c8-49c8-9462-c4bfeb376d92.html [Taiwan Ministry of Health and Welfare, Taiwan, ROC. (2016). Ten-year plan of long-term care 2.0. Retrieved from https://www.mohw.gov.tw/dl-46355-2d5102fb-23c8-49c8-9462-c4bfeb376d92.html]
    臺灣老年學暨老年醫學會主編.(2009).周全性老年醫學評估的原則與技巧. 台北市:合記圖書。[TAIWAN ASSOCIATION OF GERONTOLOGY AND GERIATRICS. (2009). Principles and Techniques of Comprehensive Geriatric Assessment. Taipei City, Taiwan, ROC: HUTCHISON BOOKS.]
    彭梓涵, 李林璦, 王璽豪.(2019). 臺灣醫療科技發展成果與分佈現況. 環球生技月刊,69。[Peng, Z. H. Li, L. A. Wang, S. H. (2019). Taiwan's medical technology development achievements and current distribution. Global Biotechnology Monthly, 69.]
    Abbate, S., Avvenuti, M., & Light, J. (2014). Usability study of a wireless monitoring system among Alzheimer’s disease elderly population. International journal of telemedicine and applications, 2014. doi:10.1155/2014/617495
    Abdallah, I. B., Bouteraa, Y., & Rekik, C. (2017). Web-based robot control for wrist telerehabilitation. International Conference on Control Engineering & Information Technology (CEIT). IEEE, 2016. doi:10.1109/CEIT.2016.7929100
    Athavipach, C., Pan-Ngum, S., & Israsena, P. (2019). A wearable in-ear EEG device for emotion monitoring. Sensors, 19(18). doi:10.3390/s19184014
    Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An empirical evaluation of the system usability scale. Intl. Journal of Human–Computer Interaction, 24(6), 574-594. doi:10.1080/10447310802205776
    Benatti, S., Benini, L., & Farella, E. (2014). Towards EMG control interface for smart garments. ACM International Symposium on Wearable Computers Adjunct Program - ISWC '14 Adjunct, September 2014, 163–170. doi:10.1145/2641248.2641352
    Batsis, J. A., Naslund, J. A., Gill, L. E., Masutani, R. K., Agarwal, N., & Bartels, S. J. (2016). Use of a wearable activity device in rural older obese adults: A pilot study. Gerontology and geriatric medicine, 2. doi:10.1177/2333721416678076
    Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., & Turchetti, C. (2018). Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes. Biomedical engineering online, 17(1), 1-18. doi:10.1186/s12938-018-0567-4
    Brooke, J. (1996). SUS: a “quick and dirty'usability. Usability evaluation in industry, 189(194),4-7.
    Bodine, K., & Gemperle, F. (2003). Effects of functionality on perceived comfort of wearables. Paper presented at the Seventh IEEE International Symposium on Wearable Computers, 2003. Proceedings. doi:10.1109/ISWC.2003.1241394
    Brown, P. J., Roose, S. P., Fieo, R., Liu, X., Rantanen, T., Sneed, J. R., & Avlund, K. (2014). Frailty and depression in older adults: a high-risk clinical population. The American Journal of Geriatric Psychiatry, 22(11), 1083-1095. doi:10.1016/j.jagp.2013.04.010
    Cadore, E. L., Rodríguez-Mañas, L., Sinclair, A., & Izquierdo, M. (2013). Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: a systematic review. Rejuvenation research, 16(2), 105-114. doi:10.1089/rej.2012.1397
    Campitelli, M. A., Bronskill, S. E., Hogan, D. B., Diong, C., Amuah, J. E., Gill, S., & Maxwell, C. J. (2016). The prevalence and health consequences of frailty in a population-based older home care cohort: a comparison of different measures. BMC geriatrics, 16(1), 1-10. doi:10.1186/s12877-016-0309-z
    Casamassima, F., Farella, E., & Benini, L. (2014). Context aware power management for motion-sensing body area network nodes. 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE). doi:10.7873/DATE.2014.183
    Cesareo, A., Nido, S. A., Biffi, E., Gandossini, S., D’Angelo, M. G., & Aliverti, A. (2020). A Wearable Device for Breathing Frequency Monitoring: A Pilot Study on Patients with Muscular Dystrophy. Sensors, 20(18), 5346. doi:10.3390/s20185346
    Chen, P., Hung, Y., Chang, C., Wang, B., Chu, Y., Lin, W., & Lin, Y. (2019). Exploring Adoption Intention of Interactive Somatosensory Game for Elders' Lower Limb Rehabilitation. BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY. doi:10.1145/3386052.3386071
    Chodzko-Zajko, W. J., Proctor, D. N., Singh, M. A. F., Minson, C. T., Nigg, C. R., Salem, G. J., & Skinner, J. S. (2009). Exercise and physical activity for older adults. Medicine & science in sports & exercise, 41(7), 1510-1530. doi:10.1249/MSS.0b013e3181a0c95c
    Collard, R. M., Boter, H., Schoevers, R. A., & Oude Voshaar, R. C. (2012). Prevalence of frailty in community‐dwelling older persons: a systematic review. Journal of the american geriatrics society, 60(8), 1487-1492. doi:10.1111/j.1532-5415.2012.04054.x
    Chowdhury, R. H., Reaz, M. B., Ali, M. A., Bakar, A. A., Chellappan, K., & Chang, T. G. (2013). Surface electromyography signal processing and classification techniques. Sensors (Basel), 13(9), 12431-12466. doi:10.3390/s130912431
    Chu, Y.-L., Chang, C.-H., Wang, Y.-W., Chen, C.-H., & Lin, Y.-C. (2020). Exploring Elders' Willingness and Needs for Adopting an Interactive Somatosensory Game into Muscle Rehabilitation Systems. Proceedings of the 2020 10th International Conference on Bioscience, Biochemistry and Bioinformatics, January 2020, 139-144. doi:10.1145/3386052.3386071
    Collard, R. M., Boter, H., Schoevers, R. A., & Oude Voshaar, R. C. (2012). Prevalence of frailty in community-dwelling older persons: a systematic review. Journal of the American Geriatrics Society, 60(8), 1487-1492. doi:10.1111/j.1532-5415.2012.04054.x
    Cotton, R. J., & Rogers, J. (2019, 24-28 June 2019). Wearable Monitoring of Joint Angle and Muscle Activity. Paper presented at the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), IEEE, 258-263. doi:10.1109/ICORR.2019.8779538
    Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., & Sayer, A. A. (2019). Sarcopenia: revised European consensus on definition and diagnosis. Age and ageing, 48(1), 16-31. doi:10.1093/ageing/afy169
    de Lima, A. L. S., Smits, T., Darweesh, S. K. L., Valenti, G., Milosevic, M., Pijl, M., . . . Bloem, B. R. (2020). Home-based monitoring of falls using wearable sensors in Parkinson's disease. Movement Disorders, 35(1), 109-115. doi:10.1002/mds.27830
    DeGoede, K., Ashton-Miller, J., & Schultz, A. (2003). Fall-related upper body injuries in the older adult: a review of the biomechanical issues. Journal of biomechanics, 36(7), 1043-1053. doi:10.1016/s0021-9290(03)00034-4
    Ensrud, K. E., Ewing, S. K., Taylor, B. C., Fink, H. A., Cawthon, P. M., Stone, K. L., & Rodondi, N. (2008). Comparison of 2 frailty indexes for prediction of falls, disability, fractures, and death in older women. Archives of internal medicine, 168(4), 382-389. doi:10.1001/archinternmed.2007.113
    Fruhling, A., & Lee, S. (2005). Assessing the reliability, validity and adaptability of PSSUQ. AMCIS 2005 Proceedings, 378.
    Falla, D., Dall'Alba, P., Rainoldi, A., Merletti, R., & Jull, G. (2002). Location of innervation zones of sternocleidomastoid and scalene muscles–a basis for clinical and research electromyography applications. Clinical Neurophysiology, 113(1), 57-63. doi:10.1016/s1388-2457(01)00708-8
    Fleury, A., Sugar, M., & Chau, T. (2015). E-textiles in clinical rehabilitation: a scoping review. Electronics, 4(1), 173-203. doi:https://doi.org/10.3390/electronics4010173
    Fried, L. P., Tangen, C. M., Walston, J., Newman, A. B., Hirsch, C., Gottdiener, J., & Burke, G. (2001). Frailty in older adults: evidence for a phenotype. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(3), m146-m157. doi:10.1093/gerona/56.3.m146
    Gircys, R., Liutkevicius, A., Kazanavicius, E., Lesauskaite, V., Damuleviciene, G., & Janaviciute, A. (2019). Photoplethysmography-based continuous systolic blood pressure estimation method for low processing power wearable devices. Applied Sciences, 9(11), 2236. doi:10.3390/app9112236
    GlobalData. (2019). Wearable Technology in Healthcare.
    Han, S. H., Yun, M. H., Kwahk, J., & Hong, S. W. (2001). Usability of consumer electronic products. International journal of industrial ergonomics, 28(3-4), 143-151. doi:10.1016/S0169-8141(01)00025-7
    Hartholt, K. A., van Beeck, E. F., Polinder, S., van der Velde, N., van Lieshout, E. M., Panneman, M. J., & Patka, P. (2011). Societal consequences of falls in the older population: injuries, healthcare costs, and long-term reduced quality of life. Journal of Trauma and Acute Care Surgery, 71(3), 748-753. doi:10.1097/TA.0b013e3181f6f5e5
    Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of electromyography and Kinesiology, 10(5), 361-374. doi:10.1016/s1050-6411(00)00027-4
    Hoogendijk, E. O., Afilalo, J., Ensrud, K. E., Kowal, P., Onder, G., & Fried, L. P. (2019). Frailty: implications for clinical practice and public health. The Lancet, 394(10206), 1365-1375. doi:10.1016/S0140-6736(19)31786-6
    Hsu, H.-H., Chou, Y.-L., Lou, S.-Z., Huang, M.-J., & Chou, P. P.-H. (2011). Effect of forearm axially rotated posture on shoulder load and shoulder abduction / flexion angles in one-armed arrest of forward falls. Clinical Biomechanics, 26(3), 245-249. doi:10.1016/j.clinbiomech.2010.10.006
    Iso, W. (1998). 9241-11. Ergonomic requirements for office work with visual display terminals (VDTs). The international organization for standardization, 45(9).
    Keogh, A., Dorn, J. F., Walsh, L., Calvo, F., & Caulfield, B. (2020). Comparing the Usability and Acceptability of Wearable Sensors Among Older Irish Adults in a Real-World Context: Observational Study. JMIR mHealth and uHealth, 8(4), e15704. doi:10.2196/15704
    Kim, B., McKay, S. M., & Lee, J. (2020). Consumer-Grade Wearable Device for Predicting Frailty in Canadian Home Care Service Clients: Prospective Observational Proof-of-Concept Study. Journal of medical Internet research, 22(9), e19732. doi:10.2196/19732
    Kuruganti, U., Parker, P., Rickards, J., & Tingley, M. (2006). Strength and muscle coactivation in older adults after lower limb strength training. International journal of industrial ergonomics, 36(9), 761-766. doi:10.1016/j.ergon.2006.05.006
    Lewis, J. R. (1995). IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use. International Journal of Human–Computer Interaction, 7(1), 57-78. doi:10.1080/10447319509526110
    Li, Q., & Luximon, Y. (2016). Older adults and digital technology: A study of user perception and usage behavior. In Advances in physical ergonomics and human factors, Springer, Cham, 2016. 155-163. doi:10.1007/978-3-319-41694-6_16
    Li, R. T., Kling, S. R., Salata, M. J., Cupp, S. A., Sheehan, J., & Voos, J. E. (2016). Wearable performance devices in sports medicine. Sports health, 8(1), 74-78. doi:10.1177/1941738115616917
    Lin, R., & Kreifeldt, J. G. (2001). Ergonomics in wearable computer design. International journal of industrial ergonomics, 27(4), 259-269. doi:10.1016/S0169-8141(00)00055-X
    Maarsingh, E. J. W., Van Eykern, L. A., Sprikkelman, A. B., Hoekstra, M. O., & Van Aalderen, W. M. C. (2000). Respiratory muscle activity measured with a noninvasive EMG technique: technical aspects and reproducibility. Journal of Applied Physiology, 88(6), 1955-1961. doi:10.1152/jappl.2000.88.6.1955.
    McCallum, C., Rooksby, J., & Gray, C. M. (2018). Evaluating the impact of physical activity apps and wearables: interdisciplinary review. JMIR mHealth and uHealth, 6(3), e58. doi:10.2196/mhealth.9054
    Mena, L. J., Félix, V. G., Ostos, R., González, A. J., Martínez-Peláez, R., Melgarejo, J. D., & Maestre, G. E. (2020). Mobile Personal Health Care System for Noninvasive, Pervasive, and Continuous Blood Pressure Monitoring: Development and Usability Study. JMIR mHealth and uHealth, 8(7), e18012. doi:10.2196/18012
    Meritam, P., Ryvlin, P., & Beniczky, S. (2018). User-based evaluation of applicability and usability of a wearable accelerometer device for detecting bilateral tonic-clonic seizures: A field study. Epilepsia, 59, 48-52. doi:10.1111/epi.14051
    Mercer, K., Giangregorio, L., Schneider, E., Chilana, P., Li, M., & Grindrod, K. (2016). Acceptance of commercially available wearable activity trackers among adults aged over 50 and with chronic illness: a mixed-methods evaluation. JMIR mHealth and uHealth, 4(1), e7. doi:10.2196/mhealth.4225
    Motti, V. G., & Caine, K. (2014). Human factors considerations in the design of wearable devices. In Proceedings of the human factors and ergonomics society annual meeting, 58(1), 1820-1824. doi:10.1177/1541931214581381
    Nadeem, A., Mehmood, A., & Rizwan, K. (2019). A dataset build using wearable inertial measurement and ECG sensors for activity recognition, fall detection and basic heart anomaly detection system. Data in brief, 27, 104717. doi:10.1016/j.dib.2019.104717
    Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces. In Proceedings of the SIGCHI conference on Human factors in computing systems, 249-256. doi:10.1145/97243.97281
    Nielsen, J. (1994). Ten usability heuristics. Retrieved from https://www.nngroup.com/articles/ten-usability-heuristics/
    Nielsen, J. (1996). Usability metrics: Tracking interface improvements. IEEE software, 13(6), 1-2. doi:10.1109/MS.1996.8740869
    O'neill, T., Varlow, J., Silman, A., Reeve, J., Reid, D., Todd, C., & Woolf, A. (1994). Age and sex influences on fall characteristics. Annals of the rheumatic diseases, 53(11), 773-775. doi:10.1136/ard.53.11.773
    Ofori-Asenso, R., Chin, K. L., Mazidi, M., Zomer, E., Ilomaki, J., Zullo, A. R., & LoGiudice, D. (2019). Global incidence of frailty and prefrailty among community-dwelling older adults: a systematic review and meta-analysis. JAMA network open, 2(8), e198398-e198398. doi:10.1001/jamanetworkopen.2019.8398
    Ouellette, M. M., LeBrasseur, N. K., Bean, J. F., Phillips, E., Stein, J., Frontera, W. R., & Fielding, R. A. (2004). High-intensity resistance training improves muscle strength, self-reported function, and disability in long-term stroke survivors. Stroke, 35(6), 1404-1409. doi:10.1161/01.STR.0000127785.73065.34
    Ozanne, A., Johansson, D., Graneheim, U. H., Malmgren, K., Bergquist, F., & Alt Murphy, M. (2018). Wearables in epilepsy and Parkinson's diseaseA focus group study. Acta Neurologica Scandinavica, 137(2), 188-194. doi:10.1111/ane.12798
    Pizzigalli, L., Filippini, A., Ahmaidi, S., Jullien, H., & Rainoldi, A. (2011). Prevention of Falling Risk in Elderly People: The Relevance of Muscular Strength and Symmetry of Lower Limbs in Postural Stability. The Journal of Strength & Conditioning Research, 25(2), 567-574. doi:10.1519/JSC.0b013e3181d32213
    Pullman, S. L., Goodin, D. S., Marquinez, A. I., Tabbal, S., & Rubin, M. (2000). Clinical utility of surface EMG: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology, 55(2), 171-177. doi:10.1212/wnl.55.2.171
    Radder, B., Prange-Lasonder, G. B., Kottink, A. I. R., Holmberg, J., Sletta, K., Van Dijk, M., . . . Rietman, J. S. (2020). The effect of a wearable soft-robotic glove on motor function and functional performance of older adults. Assistive Technology, 32(1), 9-15. doi:10.1080/10400435.2018.1453888
    Rainoldi, A., Melchiorri, G., & Caruso, I. (2004). A method for positioning electrodes during surface EMG recordings in lower limb muscles. Journal of neuroscience methods, 134(1), 37-43. doi:10.1016/j.jneumeth.2003.10.014
    Repnik, E., Puh, U., Goljar, N., Munih, M., & Mihelj, M. (2018). Using inertial measurement units and electromyography to quantify movement during action research arm test execution. Sensors, 18(9), 2767. doi:10.3390/s18092767
    Rockwood, K., Song, X., MacKnight, C., Bergman, H., Hogan, D. B., McDowell, I., & Mitnitski, A. (2005). A global clinical measure of fitness and frailty in elderly people. Cmaj, 173(5), 489-495. doi:10.1503/cmaj.050051
    Rockwood, K., & Theou, O. (2020). Using the clinical frailty scale in allocating scarce health care resources. Canadian Geriatrics Journal, 23(3), 210. doi:10.5770/cgj.23.463
    Rodríguez, I., Cajamarca, G., Herskovic, V., Fuentes, C., & Campos, M. (2017). Helping elderly users report pain levels: A study of user experience with mobile and wearable interfaces. Mobile Information Systems, 2017. doi:10.1155/2017/9302328
    Romero, L. E., Chatterjee, P., & Armentano, R. L. (2016). An IoT approach for integration of computational intelligence and wearable sensors for Parkinson's disease diagnosis and monitoring. Health and Technology, 6(3), 167-172. doi:10.1007/s12553-016-0148-0
    Sari, R. W. P., & Rochimah, S. (2018). The Determination of Website Usability Components by using Generalized Structured Component Analysis. Paper presented at the 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE). IEEE, 2018. doi:10.1109/ICITEED.2018.8534876
    Sathiyanarayanan, M., & Rajan, S. (2016, 5-10 Jan. 2016). MYO Armband for physiotherapy healthcare: A case study using gesture recognition application. Paper presented at the 2016 8th International Conference on Communication Systems and Networks (COMSNETS), IEEE, 2016, 1-6. doi:10.1109/COMSNETS.2016.7439933
    Sharfina, Z., & Santoso, H. B. (2016). An Indonesian adaptation of the system usability scale (SUS). Paper presented at the 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS), IEEE, 145-148. doi:10.1109/ICACSIS.2016.7872776
    Shneiderman, B., & Plaisant, C. (2010). Designing the user interface: strategies for effective human-computer interaction: Pearson Education India.
    Silva de Lima, A. L., Smits, T., Darweesh, S. K., Valenti, G., Milosevic, M., Pijl, M., & Bloem, B. R. (2020). Home‐based monitoring of falls using wearable sensors in Parkinson's disease. Movement disorders, 35(1), 109-115. doi:10.1002/mds.27830
    Singh, M., Alexander, K., Roger, V. L., Rihal, C. S., Whitson, H. E., Lerman, A., & Nair, K. S. (2008). Frailty and its potential relevance to cardiovascular care. Paper presented at the Mayo Clinic Proceedings, 83(10), 1146-53. doi:10.4065/83.10.1146
    Stavropoulos, T. G., Papastergiou, A., Mpaltadoros, L., Nikolopoulos, S., & Kompatsiaris, I. (2020). Sensors, 20(10), 2826. doi:10.3390/s20102826
    Verhaeghen, P., Steitz, D. W., Sliwinski, M. J., & Cerella, J. (2003). Aging and dual-task performance: a meta-analysis. Psychology and aging, 18(3), 443. doi:10.1037/0882-7974.18.3.443
    Wang, Q., Markopoulos, P., Yu, B., Chen, W., & Timmermans, A. (2017). Interactive wearable systems for upper body rehabilitation: a systematic review. Journal of Neuroengineering and Rehabilitation, 14, 21. doi:10.1186/s12984-017-0229-y
    Weiss, C. O. (2011). Frailty and chronic diseases in older adults. Clinics in geriatric medicine, 27(1), 39-52. doi:10.1016/j.cger.2010.08.003
    Wilson, S., & Laing, R. (2018). Wearable technologies: Present and future. Paper presented at the 91st World Conference of The Textile Institute. Leeds, UK.
    Zhang, J., Johnson, T. R., Patel, V. L., Paige, D. L., & Kubose, T. (2003). Using usability heuristics to evaluate patient safety of medical devices. Journal of biomedical informatics, 36(1-2), 23-30. doi:10.1016/S1532-0464(03)00060-1
    Zhou, R., & Chan, A. H. (2017). Using a fuzzy comprehensive evaluation method to determine product usability: A proposed theoretical framework. Work, 56(1), 9-19. doi:10.3233/WOR-162474
    Zhu, Z., Jiang, C., Wang, X., Chen, J., He, L., & Wu, Q. (2016, 28-30 Nov. 2016). Design of a wearable lower limb exoskeleton for paralyzed individuals. Paper presented at the 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), IEEE, 1-6. doi:10.1109/M2VIP.2016.7827296

    下載圖示 校內:2022-03-21公開
    校外:2022-03-21公開
    QR CODE