| 研究生: |
梁瀞文 Liang, Ching-Wen |
|---|---|
| 論文名稱: |
風浪模式繞射效應之研究 A Study of Diffraction Effect on Wind Wave Model |
| 指導教授: |
許泰文
Hsu, T-W |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 繞射 、風浪模式 |
| 外文關鍵詞: | diffraction, wind wave model |
| 相關次數: | 點閱:78 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前風浪數值模式中的相位平均模式無法描述波浪折、繞射共存效應。為了要彌補模式的缺失,本文以 Hsu 等人 (2005) 提出之 WWM (Wind Wave Model) 風浪模式為基礎,參考 Holthuijsen 等人 (2003) 所提出的折、繞射耦合理論,並從延伸型緩坡方程式 (Evolution Equation of Mild Slope Equation,EEMSE) 中考慮海床坡度、海床曲率和波流交互作用之影響,經由交互疊代方式在 WWM 模式中考慮波浪折、繞射共存的機制。本文以三種等水深以及三種具坡度的地形配置進行模式驗證,同時與 SWAN、EEMSE 模式以及考慮緩坡方程式建立之 WWM 模式計算結果比較,以分析模式計算波浪繞射之合理性。數值計算結果發現,本文所應用的疊代技巧,不論波浪正向或斜向入射等水深或是等坡度上之結構物而產生之繞射效應,都能有良好的可靠性以及準確度。
Presently phase-averaged model wind wave numerical model cannot simulate combined effect of refraction-diffraction. In order to make up the shortcomings of the model, this paper used the Wind Wave Model (WWM) developed by Hsu et al. (2005), and consulted phase-decoupled refraction-diffraction effects proposed by Holthuijsen et al. (2003) to add refraction and diffraction in the WWM model. This study also applied Evolution Equation of Mild Slope Equation (EEMSE). The model includes the effects of the bottom slope, seabed curvature and wave-current interaction. For the rationality of using this model to computer wave diffraction, in this research we test three bathymetric landforms with constant depth and three slopes, and at the same time, this model is compared with SWAN model, EEMSE model and WWM model which matches up Mild Slope Equation. From the numerical result, no matter wave propagates in normal angle or oblique angle to produces diffraction effect in bathymetric landforms with constant depth and slopes, the skill using in this research obtained better reliable and accuracy solution.
1.Berkhoff, J. C. W., “Computations of combined refraction-diffraction”, Proc. 13th Int. Conf. Coastal Engineering, ASCE, New York, pp. 471-490 (1972).
2.Berkhoff, J. C. W., N. Booij and A. C. Radder, “Verification of Numerical Wave Propagation Models for Simple Harmonic Linear Water Waves,” Coastal Engineering, Vol. 6, pp. 255-279 (1982).
3.Booij, N., Gravity waves on water with non-uniform depth and current, PhD Thesis. Delft University of Technology, Delft, the Netherlands, pp. 130 (1981).
4.Booij, N., L. H. Holthuijsen and R. C. Ris, “The SWAN Wave Model for Shallow Water”, Proceedings of 24th International Conference on Coastal Engineering, ASCE, Orlando, Vol. 1, pp. 668-676 (1996).
5.Booij, N., L. H. Holthuijsen, N. Doorn, and A. T. M. M. Kieftenburg, “Diffraction in a spectral wave model”, Proc. 3rd Intl. Symposium Ocean Wave Measurement and Analysis EAVES 97. ASCE, New York, pp. 243-255 (1997).
6.Booij, N., R. C. Ris, and L. H. Holthuijsen, “A third-generation Wave Model for coastal Regions, Part I: Model Description and Validation”, JGR-Oceans 98JC02622, Vol. 104, No. C4, pp.7649 (1999a).
7.Booij, N., R. C. Ris, and L. H. Holthuijsen, “A third-generation Wave Model for coastal Regions 2: Verification”, JGR-Oceans, Vol. 104, No. C4, pp.7667-7682 (1999b).
8.Boris, J. P. and D. L. Book, “Flux Corrected Transport I, SHASTA, a Fluid Transport Algorithm that Works”, Journal of Computational Physics, Vol. 16, pp. 85-129 (1973).
9.Bretschneider, C.L., “The Generation and Decay of Wind Waves in Deep Water”, Transaction American Geophysical Union, 33, No. 3, pp. 202-237 (1952).
10.Bretherton, F.P. and C.J.R. Garrett, “Wave Trains in Inhomogeneous Moving Media”, Proc. Roy. Soc. London, Vol. A302, pp. 529-554 (1968).
11.Chen, G.. Y. and H. W. Chan, “Diffraction Effects in Phase-Averaged Wave Model”, 第26屆海洋工程研討會論文集,42頁-53頁 (2004)。
12.Dingemans, M. W., “Water wave propagation over uneven bottoms, Part 1-linear wave propagation”, Adv. Ser. Ocean Eng., World Scientific 13, pp. 471 (1997).
13.Donea, J., “A Taylor-Galerkin Method for Convective Transport Problem”, International Journal for Numerical Methods in Engineering, Vol. 20, pp. 101-119 (1984).
14.Holthuijsen, L. H., A. Herman and N. Booij, “ Phase - decoupled refraction-deffraction for spectral wave models”, Coastal Engineering, Vol. 49, pp.291-305 (2003).
15.Hsu, T. W. and C. C. Wen, ”A parabolic equation extened to account for rapidly varying topography”, Ocean Engineering, Vol. 28, pp. 1479-1498 (2001a).
16.Hsu, T. W. and C. C. Wen, “On radiation boundary conditions and wave transformation across the surf zone”, China Ocean Engineering, Vol. 15, No. 3, pp. 395-406 (2001b).
17.Hsu, T. W., S. H. Ou and J. M. Liau, “Hindcasting nearshore wind waves using a FEM code for SWAN”, Coastal Engineering, Vol. 52, pp. 177-195 (2005).
18.Keller, J. B., “Geometric Theory of Diffraction”, J. Opt. Soc. Am., Vol. 52, pp. 116-130 (1957).
19.Kirby, J. T., “Higher-order approximation in the parabolic equation method for water waves”, J. Geophys. Res., Vol. 91 (C1), pp. 933-952 (1986).
20.Li, Y. S. and J. M. Zhan, “Boussinesq-type model with boundary-fitted coordinate syatem”, J. Waterw., Port, Coast., Ocean Eng., ASCE, New York, Vol. 127 (3), pp. 152-160 (2001).
21.Madsen, P. A. and O. R. Sørensen, “A new form of the boussinesq equations with improved linear dispersion characteristics : Part 2, A slowly-varying bathymetry”, Coast. Eng. Vol. 18, pp. 183-205 (1992).
22.Mase, H. and T. Takayama, “Spectral wave transformation model with diffraction effect”, Proc. 4th Int. Symposium Ocean Wave Measurement and Analysis, WAVES 2001, Vol. 1. ASCE, New York, pp. 814-823 (2001).
23.Mei, C. C., The Applied Dynamics of Ocean Surface Waves, Wiley, New York. pp. 740 (1983).
24.Penny, W. G.. and A. T. Price, “The diffraction theory of sea waves and the shelter afforded by breakwaters”, Philosophical Transactions of the Royal Society of London, Physical Science and Engineering, Vol. 244 (882), pp. 236-253 (1952).
25.Pierson, W.J., G. Neumann and R.W. James, “Practical Method for Observing and Forecasting Ocean Waves by Means of Wave Spectra and Statistics,” US Navy Hydrographic Office, Pub. 603, pp. 284 (1955).
26.Resio, D. T., “A steady-state wave model for coastal applications”, Proc. 21st Int. Conf. Coast. Eng., ASCE. New York, pp. 929-940 (1988).
27.Rivero, F. J., A. S. Arcilla and E. Carci, ”Analysis of diffraction in spectral wave models”, Proc. 3rd Int. Symosium Ocean Wave Measurement and Analysis, WAVES ’97, ASCE. New York, pp. 431-445 (1997).
28.Selmin, V., J. Donea and L. Quartapelle, “Finite Element Methods for Nonlinear Advection”, Computer Methods in Applied Mechanics and Engineering, Vol. 52, pp. 817-845 (1985).
29.Shepard, D., “A two-dimensional function for irregularly spaced data”, In 23rd ACM National Conference, pp. 517-524 (1968).
30.Sverdrup, H.U. and W.H. Munk, “Wind, Sea and Swell, Theory of Relation for Forecasting”, US Navy Hydrographic Office, Pub. 601, pp. 44 (1947).
31.Tolman, H. L, User manual and system documentation of WAVEWATCH-III version 1.15, NOAA / NWS / NCEP / OMB Technical Note 151, pp. 97 (1997).
32.Tolman, H. L, User manual and system documentation of WAVEWATCH-III version 1.18. NOAA / NWS / NCEP / OMB Technical Note 166 , pp. 110 (1999a).
33.Vincent, C. L. and M. J. Briggs, J. Waterw., Port, Coast., Ocean Eng., ASCE, New York, Vol. 115(2), pp. 269-284 (1989).
34.WAMDI Group, “The WAM Model – A Third Generation Ocean Wave Prediction Model”, Journal of Physical Oceanography, Vol. 18, pp. 1775-1810 (1988).
35.Watanabe, A. and K. Maruyama, “Numerical Modeling of Nearshore Wave Field under Combined Refraction, Diffraction and Breaking”, Coastal Engineering in Japan, Vol. 29, pp. 19-39 (1986).
36.Wei, G., J. T. Kirby, S. T. Grilli and R. Subramanya, “A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves”, J. Fluid Mech., Vol. 297, pp. 71-92 (1995).
37.Willebrand, J., “Energy Transport in a Nonlinear and Inhomogeneous Random Gravity Wave Field”, Journal of Fluid Mechanics, Vol. 70, pp. 113-126 (1975).
38.Wilson, B.W., “Graphical Approach to The Forecasting of Waves in Moving Fetches”, US Army Corps of Engineers, Beach Erosion Board Tech. Memo., 73. pp. 1-31 (1955).
39.Yanenko, N. N., Numerical Methods in Fluid Dynamics, MIR Publisher, Moscow (1986).
40.Yu, Y.-X., S.-X. Li, Y.S. Onyx and W. H. Wai, “Refraction and diffraction of random waves through breakwater,” Ocean Eng. Vol. 27, pp.489-509 (2000).
41.許泰文,「近岸水動力學」,中國土木工程學會,166頁 (2003)。
42.許泰文、歐善惠、廖建明、梁瀞文,「波浪作用力平衡方程式數值模式的繞射效應」,第27屆海洋工程研討會論文集,310頁-318頁 (2005)。
43.廖建明,「近岸風浪推算之研究」,國立成功大學水利及海洋工程研究所博士論文(2001)