| 研究生: |
陳泂融 Chen, Jong-Rong |
|---|---|
| 論文名稱: |
具無足化光柵結構之雙模干涉分波多工器 A Wavelength Division Multiplexer Using Apodized Grating-Assisted Two-Mode Interference |
| 指導教授: |
蔡宗祐
Tsai, Tzong-Yow |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 耦合模態理論 、雙模干涉 、無足化光柵 |
| 外文關鍵詞: | apodized grating, TMI-WDM |
| 相關次數: | 點閱:77 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,將利用週期呈高斯分布的無足化光柵結構(apodized grating)於單模波導管中,設計一個具禁止帶(stop band)反射頻譜的光濾波器,並以有限差分時域法(FDTD)來進行二維結構的模擬與分析。由模擬數據可知,在波導管中增加無足化光柵的對數時,可以得到較陡峭的反射頻帶,而且中心波長的反射率會更趨近1。我們接著將無足化光柵結構應用於雙模干涉分波多工器(TMI-WDM)中,探討兩種波導管結構:具側邊鋸齒形光柵與內洞型光柵。研究結果顯示,無足化光柵結構雖然會增加TMI-WDM所須的耦合長度,但是能有效地降低中心波長周邊的反射波,以得到具有平坦側頻(side-lobe)的反射頻譜。希望藉由此特性可以增加TMI-WDM分波的效能。
An accurate design for an apodized integrated optical wavelength filter using Gaussian-distribution sidewall Bragg gratings is proposed, 2-dimensionally simulated and analyzed using the finite-difference time-domain method (FDTD). It is verified that for various grating, the central wavelengths of the reflection bands are all fixed at designed 1.55 μm with the side lobes well suppressed. Then we apply the apodized grating to the TMI-WDM with different waveguide structures: the dispersive tooth-shaped grating and the central hole-etched grating. The simulated results prove that the apodized grating will increase the coupling length in TMI-WDM, but it can suppress the side-lobes additionally. Therefore, the efficiency of the WDM could be improved through the apodized gratings.
[1] K. O. Hill, Y. Fujii, D. C. Johnson, and B, Kawasaki, “Photosensitivity in optical fiber waveguides : application to reflection fiber fabrication,” Appl. Phys. Lett., vol. 32, no. 10, pp. 647, 1978.
[2] H. F. Talbot, “Facts relating to optical science No. IV.,” London. Edinburgh Philosophical Mag. J. Sci., vol. 9, pp. 401-407, 1836.
[3] O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Amer., vol. 63, no. 4, pp. 416-419, 1973.
[4] R. Ulrich, “Image formation by phase coincidences in optical waveguides,” Optics Commun., vol. 13, no.3, pp. 259-264, 1975.
[5] R. Ulrich, “Light-propagation and imaging in planar optical waveguides,” Nouv. Rev. Optique., vol. 6, no. 5, pp. 253-262, 1975.
[6] R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett., vol. 27, no. 6, pp. 337-339, 1975.
[7] D. C. Chang and E. F. Kuester, “A hybrid method for paraxial beam propagation in multimode optical waveguides,” Trans. Microwave Theory Tech., vol. MTT-29, no. 9, pp. 923-933, 1981.
[8] J. M. Heaton and R. M. Jenkins, “General matrix theory of self-imaging in multimode interference couplers,” Photonics Technology Letters, vol. 11, pp. 212-214, 1999.
[9] C. M. Weinert and N. Agrawal, “Three-dimensional simulation of multimode interference devices,” Proc. Integr. Phot. Res. (IPRC), pp. 287-289, Feb. 1994.
[10] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. lightwave Technol., vol. 13, no. 4, pp. 615-627, Apr. 1995.
[11] N. S. Kapany and J. J. Burke, Optical Waveguides, New York Academic, 1972.
[12] M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N×N multimode interference couplers including phase relations,” Appl. Opt., vol. 33, no. 17, pp. 3905-3911, 1994.
[13] A. Yariv, P. Yeh, “Optical Waves in Crystals,” 1984.
[14] A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron, QE-9, pp. 919-933, 1973.
[15] M. Matsuhara and K. O. Hill, “Optical-waveguide band-rejection filters: design,” Appl. Opt., vol. 13, no. 12, pp.2886-2888, Dec. 2001.
[16] J. L. Rebola and Adolfo V. T. Cartaxo, “Performance optimization of Gaussian apodized Fiber Bragg filters in WDM systems,” J. lightwave Technol., vol. 20, no. 8, pp. 1537-1544, Aug. 2002.
[17] M. J. N. Lima, A. L. J. Teixeira and J. R. F. da Rocha, “Simultaneous filtering and dispersion compensation in WDM systems using apodised fibre gratings,” Electronics Letters, vol. 36, no. 16, Aug. 2000.
[18] H. Kogelnik, “Filter response of nonuniform almost-periodic structure,” Bell Syst. Tech., vol. 55, pp. 109-126, 1975.
[19] K. Ennser, M. N. Zervas and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron, vol. 34, no. 5, pp.770-778, 1998.
[20] M. J. N. Lima, A. L. J. Teixeira and J. R. F. da Rocha, “Optimization of apodized fiber grating filters for WDM systems,” in Proc. IEEE LEOS Annu. Meeting, vol. 2, pp. 876-877, 1999.
[21] M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguide via a fundamental matrix approach,” Appl. Opt., vol. 26, pp. 3474-3478, 1987.
[22] S. Huang, M. LeBlanc, M. M. Ohn and R. M. Measures, “Bragg intragrating structural sensing,” Appl. Opt., vol. 34, no. 22, pp. 5003-5009, 1995.
[23] A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron, vol. 4, pp. 233-253, 1977.
[24] Tzong-Yow Tsai, Zhi-Cheng Lee, Jong-Rong Chen, Chi-Chung Chen, Yen-Cheng Fang and Ming-Hong Cha, “A novel ultracompact Two-Mode-Interference wavelength division multiplexer for 1.5-μm operation,” IEEE J. Quantum Electronics, vol. 41, no. 5, pp. 741-746, 2005.
[25] A. W. Snyder and A. Ankiewicz, “Optical fiber couplers-optimum solution for unequal cores,” J. Lightwave Technol., vol. 6, no.3, pp. 463-474, 1988.
[26] M. D. Feit and J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt., vol. 17, pp. 3990-3998, 1978.
[27] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag., vol. AP-14, pp. 302-307, 1966