| 研究生: |
陳韋丞 Chen, Wei-Cheng |
|---|---|
| 論文名稱: |
超音速高溫氣體衝擊擋板之數值模擬分析 Numerical Simulation of a Supersonic and High Temperature Jet Impingement onto Flat Plate |
| 指導教授: |
江滄柳
Jiang, Tsung-Leo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 固態燃料推進器之尾焰 、流場分析 、熱輻射效應 、數值模擬 |
| 外文關鍵詞: | Solid propellant rocket exhaust plume, Flow field analysis, Radiation effect, Numerical simulation |
| 相關次數: | 點閱:115 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於超音速尾焰噴射之衝擊流場十分複雜,無法透過實驗來觀測其細部流場現象,因此本研究欲透過數值模擬的方式,建置流場分析模型及熱輻射模型,並透過相關文獻之驗證分析以確認模型的可靠性,最後將驗證完成之模型應用於分析實際固態燃料推進器中,藉以探討高溫單相氣體衝擊擋板的相關物理現象,評估流體對擋板衝擊的影響。在流場驗證分析中,透過觀測細部流場現象了解尾焰噴射所產生之膨脹波、壓縮波以及相關震波的位置,比較紊流模型後,得出SST k-ω Model作為分析用模型,可得到較為準確的結果。在噴嘴出口壓力較小的情況下,當噴射尾流在膨脹階段中受到擋板的限制,其馬赫盤的底部較容易產生迴流區,其將成為影響壓力分佈的主因。在熱輻射模型之驗證分析中,在高溫區考慮熱輻射效應的溫度分佈略低於忽略熱輻射效應的結果;而高溫區後方區域,考慮熱輻射效應的溫度分佈較高。
最後,使用高溫氣體模擬固態燃料推進器尾焰衝擊擋板的研究中,可以得知完整的流場分佈,惟尾焰對擋板造成的溫升相較於實驗估算結果略低。然而,若考慮粒子流效應進行估算,衝擊擋板的估算溫度將與實驗估算結果較為接近,說明尾焰中粒子狀態的氧化鋁顆粒對擋板的影響是不可忽略的。
Since the impingement flow field of supersonic jet is extremely complex, it is impossible to directly observe detailed flow field phenomena using an experimental method. Therefore, in this study, the flow field analysis model, adopting the P-1 radiation model, is developed for the numerical simulation of exhaust plume of an actual solid-propellant rocket. The reliability of the above models was also confirmed through a relevant verification analysis. The jet impingement phenomenon, the temperature, and the heat flux on the plate for the numerical simulation of actual solid-propellant rockets exhaust plume are discussed. In a flow field verification analysis, the present results of the pressure distribution of the impinged plate and density-distribution contour of the impinging flow field for numerical simulation of nitrogen impingement were consistent with the experimental results, validating the present flow analysis model. A comparison of the SST k - omega turbulence model to k - epsilon turbulence model showed that the pressure distribution of the impinged plate obtained with the SST k - omega turbulence model was in more agreement with the experimental measurement values for the numerical simulation of the supersonic flow field. Furthermore, with some condition on the nozzle exit, the inside of the Mach disc was more prone to producing a recirculation zone when the exhaust jet was limited by the flat plate in the expansive flow stage. The main factor affecting the pressure distribution on the impinged plate was the existence of unstable recirculation zones. In the radiation model verification analysis, the temperature distribution taking the radiation effect into consideration was lower than the result without considering it in the high-temperature region. However, the result for the temperature distribution considering the radiation effect was higher than the result without considering it after the high-temperature region. Finally, the detailed flow field for the numerical simulation of actual solid-propellant rockets has been successfully predicted. It should be noted that the temperature distribution predicted with an assumed gaseous exhaust plume was substantially lower than the experimental measurement. However, after the impinging effect of alumina particles on the plate was taken into account, the estimated temperature distribution was shown to be in agreement with the experimental measurement. In other words, the influence of alumina particles in the exhaust plume was not negligible in predicting the temperature distribution of the impinged plate.
參考文獻
【1】https://en.wikipedia.org/wiki/Ballistic_missile
【2】https://www.stripes.com/news/frigates-to-ditch-outdated-mark-13-missile-launchers-1.13580
【3】http://www.seaforces.org/wpnsys/SURFACE/Mk-41-missile-launcher.htm
【4】https://www.quora.com/How-does-the-vertical-launch-system-work-Why-doesnt-it-explode-with-the-energy-of-the-rockets-launch
【5】Sutton G.P., Biblarz O. (2001), Rocket Propulsion Elements (7th Edition), New York:John Wiley & Sons, Inc.
【6】Lee K. S, Hong S. K., “Supersonic Jet Impingement Navier-Stokes Computations for Vertical Launching System Design Applications”, Journal of Spacecraft and Rockets, Vol.41, No.5, October 2004.
【7】徐文奇, “垂直發射裝置中燃氣兩相衝擊流場數值研究”, 哈爾濱工程大學航天工程系碩士論文, 2007.
【8】Lamont P.J., and Hunt B.L., “The Impingement of Underexpanded, Axisymmetric Jets on Perpendicular and Inclined Flat Plates,” Journal of Fluid Mechanics, Vol. 100, No. 3, 1980, pp. 471-511.
【9】Gojon R., Bogey C., Marsden O., “Large-Eddy Simulation of Supersonic Planar Jets Impinging on a Flat Plate at an Angle of 60 to 90 Degrees”, 21st AIAA/CEAS Aeroacoustics Conference, June 2015.
【10】Watts D.S., “Assessing Computational Fluid Dynamics Turbulence Models for Rocket Exhaust Plume Simulation”, 52nd AIAA/SAE/ASEE Joint Propulsion Conference, July 2016.
【11】Troyes J., Dubois I., Borie V., Boischot A., “Multi-phase Reactive Numerical Simulations of a Model Solid Rocket Motor Exhaust Jet,” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 2006.
【12】Menter F. R., “Two Equation Eddy Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, Vol. 32, No. 8, pp.1598-1605, 1994.
【13】宋緯倫, “不同紊流模式對超音速流場數值模擬結果之影響”, 成功大學航空太空工程學系碩士論文, 2010.
【14】Nobuyuki T., A. Koichi H., Toshi F, Kazuo A., Masaru K., “Numerical Simulation of a Supersonic Jet Impingement on a Ground”, Journal of Aerospace, Vol. 100, Section 1, pp. 2168-2180, 1991.
【15】Wang W., Li S., Zhang Q., Wang N., “Infrared Radiation Signature of Exhaust Plume from Solid Propellants with Different Energy Characteristics”, Chinese Journal of Aeronautic, Volume 26, Issue 3, pp. 594-600, June 2013.
【16】Feng S., Nie W., Xie Q., Duan L., “Numerical Simulation of Flow Field and Radiation of an Aluminized Solid-Propellant Rocket Multiphase Exhaust Plume,” 39th AIAA Thermophysics Conference, June 2007.
【17】Ma Y.J., Bao F.T., Xu H., Sun L., “Numerical Simulation of Solid Propellant Rocket Exhaust Plume Considering Two-Phase Flow Effects”, Applied Mechanics and Materials, Vol. 798, pp 185-189, October 2015.
【18】Binauld Q., “Numerical Simulation of Radiation in High Altitude Solid Propellant Rocket Plumes,” 7th EUCASS Advances in Aerospace Sciences, June 2017.
【19】Troyes J., Vuillot F., “Numerical Simulations of Rocket Solid Motor Engine Ignition and Duct Overpressure Waves at Reduced Scale,” 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, August 2009.
【20】Parker R. R., Klausner J.F., Mei R., “Supersonic Two-Phase Impinging Jet Heat Transfer,” Journal of Heat Transfer, Vol.135, Issue 2, pp.647-655, December 2012.
【21】Li Z., Xiang H., “Numerical Simulation of the Reactive Two-Phase Solid Rocket Motor Exhaust Plume”, 2nd International Conference on Computer Science and Electronics Engineering, March 2013.
【22】York B. J., Sinha N., Dash S. M., Anderson L., Gominho L., Koo J. H., Cheung F.B., “Steady/Transient Plume-Launcher Interactions and Progress Towards Particulate/Surface Layer Modeling”, 33rd Aerospace Sciences Meeting and Exhibit, January 1995.
【23】林章裕, 林文山, 謝啟訓, “固態燃料推進器尾焰對於銅板之沖蝕試驗及熱傳模擬”, 中華民國第27屆燃燒與能源學術研討會, 論文編號016, April 2017.
【24】蔡昊翰, “液態多孔噴注交互作用對超音速燃燒流場影響之數值模擬分析”, 成功大學航空太空工程學系碩士論文, 2018.
【25】https://www.sharcnet.ca/Software/Ansys/
【26】https://en.wikipedia.org/wiki/Optical_depth
【27】ANSYS FLUENT, Ansys Fluent 15.0 theory guide, ANSYS Inc., 2013.
【28】陳柏豐, “多孔氣體燃料噴注之交互作用對超音速燃燒流場影響之數值模擬分析”, 成功大學航空太空工程學系碩士論文, 2017.