簡易檢索 / 詳目顯示

研究生: 洪珮甄
Hung, Pei- Chen
論文名稱: 以掃描熱探針微影研究P3HT之非均向熱退火
Anisotropic Thermal Annealing of Poly (3-hexyl thiophene) by Scanning Thermal Lithography
指導教授: 郭昌恕
Kuo, Chang-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 71
中文關鍵詞: 掃描熱探針微影非均向熱退火poly(3-hexyl thiophene) (P3HT)
外文關鍵詞: scanning thermal lithography, anisotropic thermal annealing, poly (3-hexyl thiophene)
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機半導體元件在近年來於學術研究引起很大的興趣與討論。因為相較於無機材料,其擁有許多無法取代的優勢,例如:低廉的製造成本、簡單的製造程序與具多功能且可依照需求調整的物理特性。在本研究中,我們利用掃描熱探針微影對共軛高分子,poly(3-hexyl thiophene) (P3HT) 進行非均向熱退火,藉著給予熱探針一個特定的加熱溫度於P3HT高分子薄膜上,執行局部的非對稱性熱退火處理。在實驗當中,我們使用了橫向結構的樣品進行電流-電壓的測量,並根據空間電荷限制電流(space charge limited current)理論計算材料的載子遷移率。紫外-可見分光光度法(UV-vis)、拉曼光譜與光激螢光光譜 (PL) 用來檢驗在不同退火材料下其材料的結構改變。 從實驗結果當中,我們發現在經過非均向熱退火的樣品中,平行與垂直於畫線方向所測得的載子濃度存在明顯的差異。經過非均向熱退火之後,我們觀察到在120 oC處理條件,在平行於畫線方向擁有最佳的載子遷移率。

    Organic-based semiconductors have attracted great research interests in recent years because of several un-replaceable advantages in comparison with inorganic materials, including low-cost, easy fabrication processing, and versatile/ tunable physical properties. In this research work, in-situ thermal annealing was employed to the conjugated polymers, poly (3-hexyl thiophene) (P3HT) by the scanning thermal lithography (SThL). A thermal probe at a desired temperature was utilized to perform the localized and asymmetric thermal annealing on the P3HT thin film. Lateral-geometry samples were investigated in the current-voltage measurements, and the space charge limited current (SCLC) was adopted for the calculation of charge mobilities. UV-vis, photoluminescent, and Raman spectra were also examined for these samples with and without thermal annealing. Results indicated the SThL-ed P3HT samples exhibited the mobility variation in the directions parallel and perpendicular to SThL alignments. Highest charge mobility of SThL-ed P3HT samples was found in the 120 oC SThL temperature and the direction parallel to the SThL process.

    致謝 I 中文摘要 II Table of contents IV List of illustrations VI List of tables VIII CHAPTER 1 Introduction 1 1.1 Introduction of scanning probe microscopy (SPM) 1 1.1.1 Scanning tunneling microscopy (STM) 1 1.1.2 Atomic force microscopy (AFM) 3 1.1.3 Scanning thermal microscopy (SThM) 5 1.2 Introduction of scanning probe lithography (SPL) 15 1.2.1 Dip-pen nanolithography (DPN) 15 1.2.2 Mechanical force lithography (MFL) 16 1.2.3 Scanning thermal lithography (SThL) 16 1.3 Polymer orientation and crystallization 19 1.3.1 Stretching 20 1.3.2 Mechanical rubbing method 21 1.3.3 Polymer crystallization 22 1.3.4 Relationship between chain orientation, crystallinity and device performances in conducting polymer (poly (3-hexyl thiophene), P3HT) 23 1.4 Conducting polymer: poly (3-hexyl thiophene), P3HT 24 1.4.1 Charge transport mechanism of conducting polymer 26 1.5 Literature review: thermal annealing effect on conducting polymer (poly (3-hexyl thiophene), P3HT) 28 1.6 Mobility measuring system 31 1.6.1 Space-charge limited current 31 CHAPTER 2 Motivation of research 33 CHAPTER 3 Experiments 34 3.1 Materials and experimental instrument 34 3.1.1 Materials 34 3.1.2 Instruments 36 3.2 Experimental process 37 3.2.1 Electrodes fabrication 37 3.2.2 Sample preparation 40 3.2.3 Surface modification 43 3.2.4 Analysis 45 CHAPTER 4 Results and Discussion 47 4.1 Thermal analysis of P3HT film 47 4.1.1 Local thermal analysis 47 4.1.1 Thermal mapping 48 4.2 Morphology of P3HT after annealing treatment 49 4.3 Electrical properties after thermal treatment 52 4.3.1 Carrier mobility calculation 52 4.4 Optical spectrum analysis of annealed P3HT 57 4.4.1 Raman spectroscopy 57 4.4.2 Photoluminescent spectrum 61 4.4.3 UV-vis spectroscopy 62 CHAPTER 5 Conclusion 66 Reference 68

    Reference
    1. Rao, M. S. R.; Margaritondo, G. Journal of Physics D: Applied Physics 2011, 44, (46), 460301.
    2. Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Physical Review Letters 1982, 49, (1), 57-61.
    3. Paul K. Hansma, J. T. Journal of Applied Physics 1987, 61, (2), R1.
    4. Binnig, G.; Garcia, N.; Rohrer, H.; Soler, J. M.; Flores, F. Physical Review B 1984, 30, (8), 4816-4818.
    5. Binnig, G.; Quate, C. F.; Gerber, C. Physical Review Letters 1986, 56, (9), 930-933.
    6. Andrew, Y.; Ludger, K. Journal of Physics D: Applied Physics 2008, 41, (10), 103001.
    7. Simpson, G. J.; Sedin, D. L.; Rowlen, K. L. Langmuir 1999, 15, (4), 1429-1434.
    8. Meyer, E. Progress in Surface Science 1992, 41, (1), 3-49.
    9. Hammiche, A.; Reading, M.; Pollock, H. M.; Song, M.; Hourston, D. J. Review of Scientific Instruments 1996, 67, (12), 4268-4274.
    10. Price, D. M.; Reading, M.; Hammiche, A.; Pollock, H. M. International Journal of Pharmaceutics 1999, 192, (1), 85-96.
    11. Souier, T.; Samad, Y. A.; Lalia, B. S.; Hashaikeh, R.; Chiesa, M. The Journal of Physical Chemistry C 2012, 116, (15), 8849-8856.
    12. Mills, G.; Zhou, H.; Midha, A.; Donaldson, L.; Weaver, J. M. R. Applied Physics Letters 1998, 72, (22), 2900-2902.
    13. Nonnenmacher, M.; Wickramasinghe, H. K. Applied Physics Letters 1992, 61, (2), 168-170.
    14. Nakabeppu, O. I., M.; Hijikata, K. Microscale Thermophysical Engineer 1997, 1, (3), 201-203.
    15. Nakabeppu, O. C., M.; Wu, Y.; Lai, J.; Majumdar, A.,. Applied Physics Letters 1995, 66, (6), 694-696.
    16. Majumdar, A. Annual Review of Materials Science 1999, 29, (1), 505-585.
    17. Zhou, J.; Berry, B.; Douglas, J. F.; Karim, A.; Snyder, C. R.; Soles, C. Nanotechnology 2008, 19, (49), 495703.
    18. Plasmonic Resonances of Silver Nanoparticles Synthesized and Patterned by Scanning Thermal Lithography. National Cheng Kung University Department of Materials Science and Engineering: 2012.
    19. Huang, C.-M.; Yeh, C.-H.; Chen, L.; Huang, D.-A.; Kuo, C. ACS Applied Materials & Interfaces 2012, 5, (1), 120-127.

    20. Duvigneau, J.; Schönherr, H.; Vancso, G. J. ACS Applied Materials & Interfaces 2011, 3, (10), 3855-3865.
    21. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science 1999, 283, (5402), 661-663.
    22. Salaita, K.; Wang, Y.; Mirkin, C. A. Nat Nano 2007, 2, (3), 145-155.
    23. Huang, L.; Chang, Y.-H.; Kakkassery, J. J.; Mirkin, C. A. The Journal of Physical Chemistry B 2006, 110, (42), 20756-20758.
    24. Takumi Ogino, S. N., Jun-ichi Shirakashi. Jpn. J. Appl. Phys 2008, 47, 712-714.
    25. Uehara, H.; Asakawa, T.; Kakiage, M.; Yamanobe, T.; Komoto, T. Langmuir 2006, 22, (11), 4985-4991.
    26. Fenwick, O.; Bozec, L.; Credgington, D.; Hammiche, A.; Lazzerini, G. M.; Silberberg, Y. R.; Cacialli, F. Nat Nano 2009, 4, (10), 664-668.
    27. Hua, Y.; Saxena, S.; Henderson, C. L.; King, W. P. Journal of Micro/Nanolithography, MEMS, and MOEMS 2007, 6, (2), 023012-023012.
    28. Grell, M.; Bradley, D. D. C. Advanced Materials 1999, 11, (11), 895-905.
    29. Derue, G.; Coppée, S.; Gabriele, S.; Surin, M.; Geskin, V.; Monteverde, F.; Leclère, P.; Lazzaroni, R.; Damman, P. Journal of the American Chemical Society 2005, 127, (22), 8018-8019.
    30. Matsui, J.; Yoshida, S.; Mikayama, T.; Aoki, A.; Miyashita, T. Langmuir 2005, 21, (12), 5343-5348.
    31. Thomas, C.; Seguela, R.; Detrez, F.; Miri, V.; Vanmansart, C. Polymer 2009, 50, (15), 3714-3723.
    32. Yang, C. Y.; Hide, F.; Díaz-García, M. A.; Heeger, A. J.; Cao, Y. Polymer 1998, 39, (11), 2299-2304.
    33. Bradley, D. D. C. Journal of Physics D: Applied Physics 1987, 20, (11), 1389.
    34. Sadeghi, F.; Tabatabaei, S. H.; Ajji, A.; Carreau, P. J. The Canadian Journal of Chemical Engineering 2010, 88, (6), 1091-1098.
    35. Yang, C. Y.; Lee, K.; Heeger, A. J. Journal of Molecular Structure 2000, 521, (1–3), 315-323.
    36. Tseng, A. A.; Kuo, C.-F. J.; Jou, S.; Nishimura, S.; Shirakashi, J.-i. Applied Surface Science 2011, 257, (22), 9243-9250.
    37. Morandi, V.; Galli, M.; Marabelli, F.; Comoretto, D. Journal of Applied Physics 2010, 107, (7), 073106-7.
    38. Abbas, M.; D'Amico, F.; Ali, M.; Mencarelli, I.; Setti, L.; Bontempi, E.; Gunnella, R. Journal of Physics D: Applied Physics 2010, 43, (3), 035103.
    39. Fenwick, D.; Ihn, K. J.; Motamedi, F.; Wittmann, J.-C.; Smith, P. Journal of Applied Polymer Science 1993, 50, (7), 1151-1157.

    40. Pooley, C. M.; Tabor, D. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1972, 329, (1578), 251-274.
    41. Dinelli, F.; Leggett, G. J.; Shipway, P. H. Nanotechnology 2005, 16, (6), 675-682.
    42. Derue, G.; Serban, D. A.; Leclere, P.; Melinte, S.; Damman, P.; Lazzaroni, R. Org. Electron. 2008, 9, (5), 821-828.
    43. Abbas, M.; D'Amico, F.; Ali, M.; Mencarelli, I.; Setti, L.; Bontempi, E.; Gunnella, R. J. Phys. D-Appl. Phys. 2010, 43, (3).
    44. Ge, J. J.; Li, C. Y.; Xue, G.; Mann, I. K.; Zhang, D.; Wang, S. Y.; Harris, F. W.; Cheng, S. Z. D.; Hong, S. C.; Zhuang, X. W.; Shen, Y. R. J. Am. Chem. Soc. 2001, 123, (24), 5768-5776.
    45. Sakamoto, K.; Arafune, R.; Ito, N.; Ushioda, S.; Suzuki, Y.; Morokawa, S. J. Appl. Phys. 1996, 80, (1), 431-439.
    46. Mahajan, M. P.; Rosenblatt, C. J. Appl. Phys. 1998, 83, (12), 7649-7652.
    47. Taguchi, K.; Miyaji, H.; Izumi, K.; Hoshino, A.; Miyamoto, Y.; Kokawa, R. Polymer 2001, 42, (17), 7443-7447.
    48. Mamun, A.; Umemoto, S.; Okui, N.; Ishihara, N. Macromolecules 2007, 40, (17), 6296-6303.
    49. Liu, Y. X.; Chen, E. Q. Coord. Chem. Rev. 2010, 254, (9-10), 1011-1037.
    50. Jradi, K.; Bistac, S.; Schmitt, M.; Schmatulla, A.; Reiter, G. Eur. Phys. J. E 2009, 29, (4), 383-389.
    51. Maillard, D.; Prud'homme, R. E. Macromolecules 2008, 41, (5), 1705-1712.
    52. Singh, R. K.; Kumar, J.; Singh, R.; Kant, R.; Chand, S.; Kumar, V. Materials Chemistry and Physics 2007, 104, (2–3), 390-396.
    53. Kim, D. H.; Park, Y. D.; Jang, Y.; Yang, H.; Kim, Y. H.; Han, J. I.; Moon, D. G.; Park, S.; Chang, T.; Chang, C.; Joo, M.; Ryu, C. Y.; Cho, K. Advanced Functional Materials 2005, 15, (1), 77-82.
    54. Kim, D. H.; Jang, Y.; Park, Y. D.; Cho, K. Langmuir 2005, 21, (8), 3203-3206.
    55. Peng, R.; Zhu, J.; Pang, W.; Cui, Q.; Wu, F.; Liu, K.; Wang, M.; Pan, G. Journal of Macromolecular Science, Part B 2011, 50, (3), 624-636.
    56. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401, (6754), 685-688.
    57. Österbacka, R.; An, C. P.; Jiang, X. M.; Vardeny, Z. V. Science 2000, 287, (5454), 839-842.
    58. Derue, G.; Serban, D. A.; Leclère, P.; Melinte, S.; Damman, P.; Lazzaroni, R. Organic Electronics 2008, 9, (5), 821-828.
    59. Bao, Z.; Dodabalapur, A.; Lovinger, A. J. Applied Physics Letters 1996, 69, (26), 4108-4110.
    60. Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, (5370), 1741-1744.
    61. Zhao, Y.; Yuan, G.; Roche, P.; Leclerc, M. Polymer 1995, 36, (11), 2211-2214.
    62. Brédas, J. L.; Calbert, J. P.; da Silva Filho, D. A.; Cornil, J. Proceedings of the National Academy of Sciences 2002, 99, (9), 5804-5809.
    63. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J.-L. Chemical Reviews 2007, 107, (4), 926-952.
    64. Eigner, A. A.; Anglin, T. C.; Massari, A. M. The Journal of Physical Chemistry C 2010, 114, (28), 12308-12315.
    65. Moiz, S. A.; Imran, S. M.; Nahhas, A. M.; Rehman, F.; Ahmed, M. M.; Kim, H. T.; Lee, J. H. In Polaron hopping mechanism of conducting polymer, Emerging Technologies (ICET), 2012 International Conference on, 8-9 Oct. 2012, 2012; 2012; pp 1-6.
    66. Bässler, H. physica status solidi (b) 1993, 175, (1), 15-56.
    67. Stallinga, P., Electrical Characterization of Organic Electronic Materials and Devices. 1966.
    68. Friend, R. H. Pure Appl. Chem. 2001, 73, (3), 425-430.
    69. Joshi, S.; Pingel, P.; Grigorian, S.; Panzner, T.; Pietsch, U.; Neher, D.; Forster, M.; Scherf, U. Macromolecules 2009, 42, (13), 4651-4660.
    70. Dante, M.; Peet, J.; Nguyen, T.-Q. The Journal of Physical Chemistry C 2008, 112, (18), 7241-7249.
    71. Carach, C.; Gordon, M. J. The Journal of Physical Chemistry B 2013, 117, (6), 1950-1957.
    72. Taylor, D. M. Dielectrics and Electrical Insulation, IEEE Transactions on 2006, 13, (5), 1063-1073.
    73. Reid, O. G.; Munechika, K.; Ginger, D. S. Nano Letters 2008, 8, (6), 1602-1609.
    74. Giulianini, M.; Waclawik, E. R.; Bell, J. M.; Motta, N. Journal of Applied Physics 2010, 108, (1), 014512-4.
    75. Bozano, L.; Carter, S. A.; Scott, J. C.; Malliaras, G. G.; Brock, P. J. Applied Physics Letters 1999, 74, (8), 1132-1134.
    76. Mikroyannidis, J. A.; Stylianakis, M. M.; Balraju, P.; Suresh, P.; Sharma, G. D. ACS Applied Materials & Interfaces 2009, 1, (8), 1711-1718.

    無法下載圖示 校內:2023-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE