| 研究生: |
倪聖中 Ni, Sheng-Chung |
|---|---|
| 論文名稱: |
含硫磷基胺基及聚矽氧烷高分子合成與其在極壓下油/金屬界面特性之研究 Study on Syntheses of Polymers Containing Thiophosphate, Amino, and Polysiloxane Groups and Characteristics at the Oil/Metal Interface under Extreme Pressure |
| 指導教授: |
郭炳林
Kuo, P. L. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 高分子合成 、極壓添加劑 |
| 外文關鍵詞: | polymer, extreme pressure additives |
| 相關次數: | 點閱:125 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,合成多種含有磷硫基及胺基之高分子,並利用1H-NMR、 FT-IR 光譜及元素分析加以鑑定。這些合成的高分子於高負荷及高轉速下在金屬表面的抗摩耗(Anti-wear)功能可藉由測量油溫及兩金屬表面之間的摩擦係數與接觸電阻評估。
(1) 合成及鑑定含有磷硫基與胺基之高分子-poly [diethyl 2-(methacryloyloxy) ethylphosphate-stearylacrylate](PPS) 與 poly (2-dimethylaminoethylacrylate -stearyl acrylate) (PNS)。在抗摩耗實驗的結果中看到含胺基高分子PNS在低溫時會最有效的限制油溫及摩擦係數的增加。可是在較高溫度時,PNS降低油溫及摩擦係數的效果就較基礎油差,而此時含磷硫基高分子 PPS可最有效的降低油溫及摩擦係數並且增加接觸電阻。高分子PPS在金屬表面的吸著層除可以SEM直接觀察外,並可以EDS及ESCA測定吸著層中的磷含量及Fe-S鍵結之存在。這些結果顯示含磷硫基高分子會藉由磷硫基與金屬的化學吸著而形成吸著層。與PPS相較之下,PNS在低溫時物理吸著在金屬表面,然而在高溫時SEM觀察則沒有其高分子吸著層。
(2) 分別合成及鑑定含有磷硫聚矽氧烷基、磷硫胺基及磷硫聚矽氧烷胺基之高分子。在抗摩耗實驗結果中顯示含有磷硫基的高分子會降低摩擦係數與明顯的限制油溫的上升。含磷硫基之高分子若含有較多量的聚矽氧烷基就會增加高分子在金屬表面建立吸著層的時間。但是,若有較多量的胺基,則會減小高分子建立吸著層的時間。因此,所合成的含磷硫基之高分子中以具有較少的聚矽氧烷基及較多的胺基的高分子有最厚的吸著層。
(3) 分別合成及鑑定含有聚矽氧烷基、磷硫聚矽氧烷及聚矽氧烷胺基之高分子。在抗摩耗實驗結果中顯示,在磷硫基化學吸著前,由於聚矽氧烷基結構的障礙,含有磷硫聚矽氧烷基的高分子就其他合成的含聚矽氧烷基高分子有較低的摩擦係數與油溫。含聚矽氧烷胺基高分子則會藉由胺基的吸著而使高分子接近金屬表面,再藉由聚矽氧烷基而降低摩擦係數並限制油溫的上升。然而,含聚矽氧烷胺基高分子在低溫時是物理吸著,隨著油溫的增加,反而會脫附而離開金屬表面。
(4) 合成及鑑定三種新型含磷硫基擬樹枝狀高分子(D400(EI)0P, D400(EI)4P, and D400(EI)8P)。由抗摩耗實驗結果中顯示,在兩側有較多磷硫基含量的擬樹枝狀高分子D400(EI)8P,會降低形成吸著層之操作時間,且由於有較多的磷硫基與金屬表面形成化學吸著而使得電阻增加並且有厚的吸著層。在測試過程中,此化學吸著層可明顯降低摩擦係數及限制油溫的上升並且使金屬的重量損失減小。
In this dissertation multiform polymer that contained thiophosphate and amino group were synthesized and characterized by 1H-NMR and FT-IR spectra and by elementary analysis. The antiwear (AW) performances of these synthesized polymers on metal surfaces under a high load and rotary velocity were investigated by measuring the temperature of oil, frictional coefficient, and electrical contact resistance between the two metal surfaces.
(1) Thiophosphate- and amino-containing polymers-poly [diethyl 2-(meth- acryloyloxy) ethyl phosphate-stearyl acrylate](PPS) and poly (2-dimethyl- aminoethylacrylate-stearyl acrylate) (PNS)-were synthesized and characterized. The AW experimental results indicated that amino-containing polymer PNS most effectively limited the increase of the oil temperature and the frictional coefficient at low temperature. However, PNS reduced the oil temperature and frictional coefficient less effectively than the base oil at high temperature, whereas PPS most effectively reduced the oil temperature and frictional coefficient and increased the electrical resistance at high temperatures. Moreover, the adsorption layers of PPS could be directly observed with scanning electron microscope (SEM). These adsorption layers were analyzed by energy-dispersible spectrometry to determine the phosphorus content and by electron spectroscopy for chemical analysis (ESCA) to demonstrate the existence of ferric or ferrous ions of sulfide or sulfate. The results of this study suggested that the adsorption layer of the thiophosphate-containing polymer resulted in chemisorption by a reaction of the thiophosphate group on a metal surface. In contrast, an amino-containing polymer was physically adsorbed onto a metal surface at low temperature, although no adsorption layer was observed at high temperature with SEM.
(2) Polymers that separately contained thiophosphate-polysiloxane, thiophosphate- amino, and thiophosphate-polysiloxane-amino were synthesized and characterized. The AW results demonstrate that polymers contained thiophosphate groups were observed to reduce the frictional coefficient and markedly limit the increase in the temperature of oil. A higher content of polysiloxane group in the thiophosphate-containing polymers corresponded to an increased operating time to establish the adsorption layer on the metal surface. However, a higher content of amino groups in the thiophosphate-containing polymers reduced the operating time required for the layer to form. The layers that formed on the metal surface of polymers containing less polysiloxane and more amino groups were the thickest layer for all the synthesized thiophosphate-containing polymers.
(3) Polymers that separately contained polysiloxane, thiophosphate-polysiloxane, polysiloxane-amino groups were synthesized and characterized. The AW results showed that the oil temperature and frictional coefficient of thiophosphate-polysiloxane-containing polymer were lower than that of other synthesized polysiloxane-containing polymers before chemical adsorption by the thiophosphate group, which was resulted from the protection by the polysiloxane structure. The amino-polysiloxane-containing polymer that settled on the metal surfaces by adsorbing the amino group reduced the frictional coefficient and limited the increase in the oil temperature caused by the presence of the polysiloxane group. Nevertheless, the amino-polysiloxane-containing polymer physically adsorbed onto the metal surfaces at a low temperature and desorbed from the metal surfaces with increasing oil temperature.
(4) Three novel types of thiophosphate-containing hyperbranched polymers D400(EI)0P, D400(EI)4P, and D400(EI)8P were synthesized and characterized. The AW results demonstrated that more thiophosphate groups on the either sides of hyperbranched polymer D400(EI)8P were found to increase the electrical contact resistance due to the chemical adsorption of thiophosphate groups onto the metal surfaces, forming a thick layer and reducing operating time required to form the adsorption layer. The adsorption layers markedly reduced the frictional coefficient and limited the increase in oil temperature during testing and the weight loss of the metal was reduced.
1. Pinkus, O.; Wilcock, D.F. lub Eng 1978, 34, 599.
2. Ranney, M.W. Lubricant additives recent developments. Noyes Data Co, Park Ridge, NJ. 1978, 35-38.
3. Fujimoto, T. New introduction to surface active agents. Japan: Sanyo chemical industry. 1985, 290-297.
4. Štěpina, V.; Veselý, V. Lubricants and special fluids. Czecho-Slovakia: Elsevier science publishers, 1992, 381-393.
5. Bartz, W.J. Engine oils and automotive lubrication. Technische Akademie Esslingen, Ostfildern, Germany. 1993, 149-173.
6. Born, M.; Hipeaux, J.C.; Marhand, P.; Parc, G. Lubr Sci 1992, 4, 93-116.
7. Tuli, D.K.; Sarin, R.; Gupta, A.K.; Kumar, A.H.; Rai, M.M.; Bhatnagar, A.K. Lubr Eng 1995, 51, 298-303.
8. Sarin, R.; Tuli, D.K.; Rai, M.M.; Mehta, A.K.; Bhatnagar, A.K. Lubr Eng 1995, 51, 313-320.
9. Zhang, J.; Liu, W.; Xue, Q. Wear 1999, 236, 34.
10. Varlot, K.; Kasrai, M.; Bancroft, G.M.; Yamaguchi, E.S.; Ryason, P.R.; Igarashi, J. Wear 2001, 249, 1029.
11. Fuller, M.; Yin, Z.; Kasrai, M.; Bancroft, G. M.; Yamaguchi, E. S.; Ryason, P.R.; Willermet, P. A.; Tan, K. H. Trib Int 1997, 30, 305.
12. Palacios, J. M. Trib Int 1986, 19, 35.
13. Smith, G. C.; Bell, J. C. Appl Surf Sci 1999, 144, 222.
14. Cavdar, B.; Ludema, K.C. Wear 1991, 148, 329-346.
15. Cao, L.L.; Sun, Y.M.; Zheng, L.Q. Wear 1990, 140, 345-357.
16. Yang, D.; Zhou, J.; Xue, Q. Wear 1996, 199, 60-65.
17. Zhang, J.; Liu, W.; Xue, Q. Wear 1999, 224, 50-55.
18. Choi, U.S.; Ahn, B.G.; Kwon, O.K.; Chun, Y.J. Trib Int 1997, 30, 9, 677-683.
19. Mammen, A.; Agarwal, C.V.; Verma, V.K. Wear 1981, 71, 355-361.
20. Bhattachrya, A.K.; Sing, T.; Verma, V.K.; Nakayama, K. Wear 1990, 136, 345-357.
21. Singh, T.; Singh, R.; Verma, V.K.; Nakayama, K. Tribol Int 1990, 23, 41-46.
22. Sarin, R.; Tuli, D.K.; Verma, A.S.; Rai, M.M.; Bhatnagar, A.K. Wear 1994, 93-102.
23. Singh, T.; Bhattachrya, A.K.; Verma, V.K. Lubr Eng 1989, 46, 681-685.
24. Ren, T.; Xue, Q.; Wang, H. Wear 1994, 172, 59-64.
25. Wan, Y.; Pu, Q.; Xue, Q.; Su, Z. Wear 1996, 192, 74-77.
26. Zhang, J.Y.; Liu, W.M.; Xue, Q. Wear 1999, 224, 68-72.
27. Barnes, A.M.; Bartle, K.D.; Thibon, Vincent R.A. Tribology 2001, 34, 389-395.
28. Aktary, M.; McDermott, M.T.; Torkelson, J. Wear 2001, 247, 172-179.
29. Papay, A.G. Lubrication Sci 1998, 10, 209-224.
30. Yin, Z.; Kasrai, M.; Fuller, M.; Bancroft, G.M.; Fyfe, K.; Tan, K.H. Wear 1997, 202, 172-191.
31. Willermet, P.A.; Dailey, D.P.; Carter Ш, R.O.; Schmitz, P.J.; Zhu, W. Tribol Int 1995, 28, 177-187.
32. Bancroft, G.M.; Kasrai, M.; Fuller, M.L.S.; Yin, Z.; Fyfe, K.; Tan, K.H. Tribol Lett 1997, 3, 47-51.
33. Martin, J.M. Tribol Lett 1999, 6, 1-8.
34. Fuller, M.L.S.; Kasrai, M.; Bancroft, G.M.; Fyfe, K.; Tan, K.H. Tribol Int 1998, 31, 627-644.
35. Fuller, M.L.S.; Yin, Z.; Kasrai, M.; Bancroft, G.M.; Yamaguchi, E.S.; Ryason, P.R.; Tan, K.H. Tribol Int 1997, 30, 305-315.
36. Yin, Z.; Kasrai, M.; Bancroft, G.M.; Laycock, K.F.; Tan, K.H. Tribol Int 1993, 26, 383-388.
37. Ferrari, E.S.; Roberts, K.J.; Sansome, M.; Adame, D. Wear 1999, 236, 259-275.
38. Ferrari, E.S.; Roberts, K.J.; Sansome, M.; Adame, D. Wear 1999, 236, 246-258.
39. Sheasby, J.S.; Jennings, M.C.; Cassells, K.D.; Wear 1999, 231, 256-264.
40. Wan, Y.; Cao, L.; Xue, Q. Tribol Int 1998, 30, 767-772.
41. Belin, M.; Martin, J.M.; Tourillon, G.; Constans, B.; Bernasconi, C. Lubr Sci 1995, 8, 3-10.
42. So, H.; Lin, Y.C.; Wear 1994, 177, 105-115.
43. Coy, R.C.; Jones, R.B.; ASLE Trans 1979, 24, 77-90.
44. Spedding, H. Watkins, R.C.; Tribol Int 1982, 15, 9-12.
45. Watkins, R.C.; Tribol Int 1982, 15, 13-15.
46. Taylor, L.; Dratva, A. Spikes, H.A. Tribol Trans 2000, 43, 469-479.
47. Wan, Y.; Pu, Q.; Xue, Q.; Su, Z. Wear 1996, 192, 74-77.
48. Ren T.; Xue, Q.; Wang, H. Wear 1994, 172, 59-64.
49. Zang, Z.; Su, C.; Liu, W.; Xue, Q.; Tan, M. Wear 1996, 192, 6-10.
50. Gao, Y.; Wu, Z.; Zhang, Z.; Xue, Q. Wear 1998, 222, 129-134.
51. Gao, Y.; Wu, Z.; Zhang, Z.; Xue, Q. Materials Research Bulletin 1999, 34, 1867-1874.
52. Baldwin, B.A. ASLE Trans 1976, 19, 335-344.
53. Huang, Y.W.; Cheng, G.X.; Dong, J.X. Lubr Sci 1990, 2, 253-266.
54. Gehrmann, W.A. SAE Paper No. 921736, SAE, Warrendale, PA, 1992.
55. Sarin, R.; Tuli, D. K.; Rai, M.M.; Mehta, A.K.; Bhatnagar. Lubr Eng 1995, 51, 4, 313-320.
56. Schumacher, R.; Zinke, H. Trib Int 1997, 30, 3, 199-208.
57. Chen, B.; Dong, J.; Chen, G. Wear 1996, 196, 16-20.
58. Plaza, S.; Margielewski, L.; Celichowski, G.; Wesolowski, R.W.; Stanecka, R. Wear 2001, 249, 1077-1089.
59. Delfort, B.; Chive, A.; Daoudal, B.; Lacome, T. Trib Trans 1998, 41, 140-144.
60. Schumacher, R.; Zinke, H. Wear 1994, 179, 45-48.
61. Mishra, M.K.; Saxton, R.G.; Chemtech Aprl 1995, 35-41.
62. Kuo, P.L.; Chen, K.C. Polymer 1997, 38, 20, 5203-5209.
63. Puziy, A.M.; Poddubnaya, O.I. Carbon 1998, 36, 45-50.
64. Plaza, S. Wear 1983, 85, 205-211.
65. Furey, M.J. Wear 1973, 26, 369-392.
66. Furey, M.J.; Kajdas, C.; Kempinski, R.; Tripathy, B.S. Lubr Sci 1997, 10, 3-25.
67. Shirodkar, S.M.; Benfaremo, N. Lubr Eng 1994, 50, 8, 641-646.
68. Smith, G.C.; Bell, J.C. Applied Surface Science 1999, 144-145, 222-227.
69. Yin, Z.; Kasrai, M.; Bancroft, G.M.; Fufe, K.; Colaianni, M.L.; Tan, K.H. Wear 1997, 202, 192-201.
70. Huang, W.; Dong, J.; Li, F.; Chen, B. Trib Int 2000, 33, 553-557.
71. Martin, J.M.; Grossiord, C.; Mogne, T.L.; Igarashi, J. Trib Int 2000, 33, 453.
72. Yang, D.; Xue, Q.; Zhang, X.; Ding, X.; Lin, W. Wear 1996, 193, 66.
73. Caporiccio, G.; Cann, P.M.; Spikes, H.A. Wear 1996, 193, 261.
74. Centers, P.W. Trib Trans 1993, 36, 381.
75. Ananthapadmanabhan, K.P.; Goddard, E.D.; Chandar, P. Colloid Surf 1990, 44,281.
76. Cutler, J.N.; Sanders, J.H.; John, P.J.; DeStasio, G.; Gilbert, B.; Tan, K, Wear 1999, 236, 165.
77. Seal, S.; Krezoski, S.; Barr, T.L.; Petering, D.H.; Evans, P.H.; Klinowski, J.J. Hazard Mater 1997, 53, 57.
78. Unnikrishnan, R.; Jain, M.C.; Harinarayan, A.K.; Mehta, A.K. Wear 2002, 252, 240.
79. Rehunadhan Nair, C.P.; Clouet, G.; Brossas,J. J polym Sci Part A:Polym Chem 1988, 26, 1791.
80. Chu, H.Y.; Lin, J.F. Wear 2000, 239,126.
81. Plaza, S. ASLE Trans 1987, 30, 233.
82. Schumacher, R.; Zinke, H.; Landolt, D.;Mathieu, H.J. Int Kolloq 5th 1986, 1, 3/9/1-3/9/19 (Ger.).
83. Lakatos-Varsányi, M.;Falkenberg, F.; Olefjord, I. Electrochim Acta 1998, 43, 187.
84. Liu, W.; Hu, L.; Zhang, Z. Thin Solid Films 1999, 144, 222-227.
85. Kuo, P.L.; Ghosh, S.K.; Liang, W.J; Hsieh, Y.T. J polym Sci Part A: Polym Chem 2001, 39, 3018.
86. Fischer, M.; Vögtle, F. Angew Chem Int Engl 1999, 38, 884.
87. Voil, B. J Polym Sci Part A: Polym Chem 2000, 38, 2505.
88. Kuo, P.L.; Liang, W.J; Wang, F.Y., Submited for publication.
89. Radke, W.; Litvinenko, G.; Müller, A.H.E. Macromolecules 1998, 31, 239.
90. Lach, C.; Frey, H. Macromolecules 1998, 31, 2381.
91. Weimer, M.W.; Fréchet, J.M.J.; Gitsov, I. J Polym Sci Part A: Polym Chem 1998, 36, 955.
92. Fréchet, J.M.J. Science 1994, 263, 1710.