簡易檢索 / 詳目顯示

研究生: 羅士軒
Lo, Shih-Hsuan
論文名稱: 無摻雜鍺基板鰭式電晶體之研究
Study on Dopingless Germanium FinFET
指導教授: 高國興
Kao, Kuo-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 43
中文關鍵詞: 無摻雜金屬接觸鰭式電晶體互補式金氧半
外文關鍵詞: Germanium, Dopingless, MS contact, FinFET, CMOS
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,提出了無摻雜鍺鰭式電晶體結構,與傳統電晶體最大的不同在於省去離子佈植所耗費的時間及成本,也避免後續活化退火所帶來的高溫熱預算影響,因此製程溫度可維持400 ℃以下。在無法利用高濃度摻雜來降低接觸電阻的情況下,我們使用不同的金屬來分析電性的差異,最後成功完成無摻雜鍺鰭式電晶體之研製,展現了1000以上的電流開關比例,Ion達5.9 µA/µm,次臨界搖擺斜率(SS)為66 mV/dec。本研究也討論了無摻雜元件特有的極性轉換特性,利用背板電極施加偏壓改變通道和汲/源極能帶彎曲來調變元件特性,成功實現在同一顆元件具有P型及N型電晶體的導通特性。最後利用鎳以及鈦作為接觸金屬,經過熱退火後,在無摻雜情況下完成了反相器的電路,也成功量測出VTC轉換曲線,電壓增益可達約22 V/V,驗證此無摻雜鰭式電晶體可實際應用於邏輯電路之中。

    In this thesis, the Ge dopingless FinFETs are proposed and demonstrated experimentally. The major difference from the conventional transistor is no intentional doping or ion implantation required, and thus the impacts of high-temperature activation annealing can be avoided. Since no heavy doping in the dopingless FETs is employed for the reduction of the contact resistance, we use different source/drain (S/D) work-function metals to improve the electrical performance. The Ge dopingless FinFETs with ION/IOFF ratio more than 1000, Ion = 5.9 µA/um and SS = 66 mV/dec are successfully achieved. This study also shows the unique conversion characteristics of carrier conduction in the dopingless devices. Using the sub-gate bias applied to tune the band bending of channel and S/D regions, the polarity of device electrical conduction can be modulated. P-type and n-type transistors in the same transistor through the sub-gate biases are accordingly achieved. Finally, nickel and titanium are used as the S/D contact metals for p- and n-FETs, respectively. The CMOS inverter is therefore fulfilled without intentional doping. Desirable voltage transfers characteristics (VTC) with the maximum voltage gain of 22 V/V are achieved, indicating that the dopingless Ge FinFET is promising and can be applied for practical logic device applications.

    摘要 III Abstract IV Contents VI Figure Captions IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Source/drain process evolution 5 1.2.1 Traditional ion implant source/drain MOSFETs 5 1.2.2 Random dopant fluctuation 6 1.3 Ambipolar Schottky barrier FETs 7 1.3.1 Metal-semiconductor Schottky barrier contact 7 1.3.2 MOSFETs with Schottky barrier contact 8 1.3.3 Ambipolar characteristic MOSFETs 9 1.4 Motivation 11 1.5 Organization of the thesis 12 Chapter 2 Experimental Flow of device 13 2.1 Fin FET structure Fabrication 13 2.2 Process technology details 14 2.2.1 Gate stack interfacial layer treatment process 14 2.2.2 Deposit Al2O3 by Atomic layer deposition (ALD) 16 2.2.3 Fin structure defined by e-beam exposure 16 2.2.4 Contact window etch process 16 2.2.5 Metal to semiconductor contact process 17 Chapter 3 Results and Discussions 18 3.1 Measurement instrument and method introduction 18 3.1.1 Threshold voltage definition 18 3.1.2 Subthreshold swing (SS) definition 19 3.1.3 Drain Induce Barrier Lowing (DIBL) definition 19 3.2 Electrical characteristics for dopingless Ge PMOS FinFETs 20 3.2.1 Measure dopingless PFETs by tungsten probe 20 3.2.2 Measure result of dopingless Ge FETs with the Ni contact 22 3.2.3 Compare to dopingless and implantation PFETs 23 3.2.4 The subthreshold slope, threshold voltage and DIBL analysis 24 3.3 Electrical characteristics for dopingless Ge NMOS FinFETs 25 3.3.1 Measure dopingless NFETs by tungsten probe 25 3.3.2 Measure result of dopingless Ge NFETs with the Ni and Ti contact 26 3.3.3 Compare to dopingless and implantation NFETs 27 3.4 Bipolar conduction behavior on dopingless Ge FinFETs 28 3.4.1 Bipolar measure result with dopingless FETs 28 3.4.2 Compare bipolar conduction with dopingless FETs and implantation NFETs 30 3.5 The dopingless Ge applied to CMOS circuits 32 3.5.1 The dopingless Ge CMOS structure 32 3.5.2 Measure result of dopingless Ge CMOS 35 Chapter 4 Conclusion & Future Work 39 4.1.1 Conclusion 39 4.1.2 Future work 39 Reference 41

    [1] W. M. Holt, "1.1 Moore's law: A path going forward," in 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016: IEEE, pp. 8-13.
    [2] K. Kim, O. Kwon, J. Seo, T. Won, S. Birner, and A. Trellakis, "Two-Dimensional Quantum Effects and Structural Optimization of FinFETs with Two-Dimensional Poisson-Schrodinger Solver," JOURNAL-KOREAN PHYSICAL SOCIETY, vol. 45, no. 2, pp. 1384-1390, 2004.
    [3] K. Yim et al., "Novel high-κ dielectrics for next-generation electronic devices screened by automated ab initio calculations," NPG Asia Materials, vol. 7, no. 6, p. e190, 2015.
    [4] J.-P. Colinge, "Multigate transistors: Pushing Moore's law to the limit," in 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2014: IEEE, pp. 313-316.
    [5] Y.-J. Lee et al., "Low-temperature microwave annealing processes for future IC fabrication—A review," IEEE Transactions on electron devices, vol. 61, no. 3, pp. 651-665, 2014.
    [6] M.-H. Chiang, J.-N. Lin, K. Kim, and C.-T. Chuang, "Random dopant fluctuation in limited-width FinFET technologies," IEEE Transactions on Electron Devices, vol. 54, no. 8, pp. 2055-2060, 2007.
    [7] G. Leung and C. O. Chui, "Variability impact of random dopant fluctuation on nanoscale junctionless FinFETs," IEEE Electron Device Letters, vol. 33, no. 6, pp. 767-769, 2012.
    [8] B. Sharma, Metal-semiconductor Schottky barrier junctions and their applications. Springer Science & Business Media, 2013.
    [9] A. Kaneko et al., "High-performance FinFET with dopant-segregated Schottky source/drain," in 2006 International Electron Devices Meeting, 2006: IEEE, pp. 1-4.
    [10] Y. Tamura, "A Novel Interface Controlled Silicidation Process for Future 3D Schottky Devices," Master Thesis, 2013, Department of Electrical and Electronic Engineering ….
    [11] H.-C. Lin, M.-F. Wang, C.-Y. Lu, and T.-Y. Huang, "Ambipolar Schottky barrier silicon-on-insulator metal–oxide–semiconductor transistors," Solid-State Electronics, vol. 47, no. 2, pp. 247-251, 2003.
    [12] S. Pregl, A. Heinzig, L. Baraban, G. Cuniberti, T. Mikolajick, and W. M. Weber, "Printable parallel arrays of Si nanowire Schottky-barrier-FETs with tunable polarity for complementary logic," IEEE Transactions on Nanotechnology, vol. 15, no. 3, pp. 549-556, 2016.
    [13] M. De Marchi et al., "Polarity control in double-gate, gate-all-around vertically stacked silicon nanowire FETs," in 2012 International Electron Devices Meeting, 2012: IEEE, pp. 8.4. 1-8.4. 4.
    [14] W. M. Weber et al., "Tuning the polarity of Si-nanowire transistors without the use of doping," in 2008 8th IEEE Conference on Nanotechnology, 2008: IEEE, pp. 580-581.
    [15] F. Wessely, T. Krauss, and U. Schwalke, "CMOS without doping: Multi-gate silicon-nanowire field-effect-transistors," Solid-State Electronics, vol. 70, pp. 33-38, 2012.
    [16] A. Heinzig, S. Slesazeck, F. Kreupl, T. Mikolajick, and W. M. Weber, "Reconfigurable silicon nanowire transistors," Nano letters, vol. 12, no. 1, pp. 119-124, 2011.
    [17] C.-L. Chu et al., "Stacked Ge-Nanosheet GAAFETs Fabricated by Ge/Si Multilayer Epitaxy," IEEE Electron Device Letters, vol. 39, no. 8, pp. 1133-1136, 2018.
    [18] Y.-J. Lee et al., "Ge GAA FETs and TMD FinFETs for the Applications Beyond Si—A Review," IEEE Journal of the Electron Devices Society, vol. 4, no. 5, pp. 286-293, 2016.
    [19] S. Shin et al., "Performance potential of Ge CMOS technology from a material-device-circuit perspective," IEEE Transactions on Electron Devices, vol. 65, no. 5, pp. 1679-1684, 2018.
    [20] M. van Dal et al., "Ge CMOS gate stack and contact development for Vertically Stacked Lateral Nanowire FETs," in 2018 IEEE International Electron Devices Meeting (IEDM), 2018: IEEE, pp. 21.1. 1-21.1. 4.
    [21] L. Witters et al., "Strained germanium gate-all-around PMOS device demonstration using selective wire release etch prior to replacement metal gate deposition," IEEE transactions on electron devices, vol. 64, no. 11, pp. 4587-4593, 2017.
    [22] E. Bury et al., "Self-heating in FinFET and GAA-NW using Si, Ge and III/V channels," in 2016 IEEE International Electron Devices Meeting (IEDM), 2016: IEEE, pp. 15.6. 1-15.6. 4.
    [23] K.-L. Yeh, H.-C. Lin, R.-G. Huang, R.-W. Tsai, and T.-Y. Huang, "Reduction of off-state leakage current in Schottky barrier thin-film transistors (SBTFT) by a field-induced drain," Japanese journal of applied physics, vol. 41, no. 4S, p. 2625, 2002.
    [24] M.-S. Yeh et al., "Ge FinFET CMOS Inverters With Improved Channel Surface Roughness by UsingIn-SituALD Digital O 3 Treatment," IEEE Journal of the Electron Devices Society, vol. 6, pp. 1232-1237, 2018.
    [25] S. Barraud et al., "Scaling of trigate junctionless nanowire MOSFET with gate length down to 13 nm," IEEE Electron Device Letters, vol. 33, no. 9, pp. 1225-1227, 2012.
    [26] L. Chen, F. Cai, U. Otuonye, and W. D. Lu, "Vertical Ge/Si core/shell nanowire junctionless transistor," Nano letters, vol. 16, no. 1, pp. 420-426, 2015.
    [27] K. Cheng, B. B. Doris, A. Khakifirooz, P. Kulkarni, and T. H. Ning, "Junctionless transistor," ed: Google Patents, 2014.
    [28] C.-W. Lee et al., "High-temperature performance of silicon junctionless MOSFETs," IEEE transactions on electron devices, vol. 57, no. 3, pp. 620-625, 2010.
    [29] F. Wessely, T. Krauss, and U. Schwalke, "Novel application of wafer-bonded MultiSOI: Junctionless nanowire transistors for CMOS logic," ECS Transactions, vol. 33, no. 4, pp. 169-173, 2010.
    [30] R. Yu et al., "Device design and estimated performance for p-type junctionless transistors on bulk germanium substrates," IEEE Transactions on Electron Devices, vol. 59, no. 9, pp. 2308-2313, 2012.
    [31] J. Ryckaert et al., "The Complementary FET (CFET) for CMOS scaling beyond N3," in 2018 IEEE Symposium on VLSI Technology, 2018: IEEE, pp. 141-142.

    下載圖示 校內:2024-08-20公開
    校外:2024-08-20公開
    QR CODE