簡易檢索 / 詳目顯示

研究生: 鄒志成
Tsou, Chih-Cheng
論文名稱: 探討dacA基因對化膿性鏈球菌感染過程的影響
Effect of the dacA gene in Streptococcus pyogenes infection
指導教授: 吳俊忠
Wu, Jiunn-Jong
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 99
中文關鍵詞: 盤尼西林結合蛋白化膿性鏈球菌
外文關鍵詞: penicillin-binding protein, Streptococcus pyogenes
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   化膿性鏈球菌為人類常見的致病菌,在臨床上引起的人類疾病從輕微的咽喉炎、皮膚感染到嚴重的壞死性肌膜炎、鏈球菌毒性休克症候群等。雖然已知化膿性鏈球菌感染需要許多的致病因子參與其中,但是真正的細菌致病分子機轉仍未被了解透徹。盤尼西林結合蛋白(PBPs)在革蘭氏陽性菌中不僅被發現參與細胞壁合成,亦發現在許多的動物感染模式中具有致病角色。化膿性鏈球菌的dacA基因位於opp 操縱子上游推測可能為盤尼西林結合蛋白,本論文主要探討dacA基因是否為盤尼西林結合蛋白以及此蛋白是否扮演在化膿性鏈球菌致病的角色。首先,我們利用插入法將dacA基因進行突變,以南方點墨法與PCR確認突變株。野生株與突變株的生長曲線並沒有顯著的差異,利用RT-PCR分析下游基因的表現發現突變dacA基因並無影響下游基因。在掃瞄氏電子顯微鏡下觀察兩者的型態也並無明顯差異性,然而在穿透式電子顯微鏡負染色下觀察,突變株的細胞壁可能較為薄弱而有皺折的型態。野生株與突變株兩者的盤尼西林最小抑制濃度皆小於0.06 g/ml。利用螢光標記盤尼西林測試DacA是否具有盤尼西林結合的角色,結果顯示dacA突變株造成PBP 4及PBP 5對盤尼西林親和力的降低,推測DacA具有盤尼西林結合的功能。由脫脂牛奶培養基實驗得知DacA突變株不會影響SpeB的表現,然而dacA突變株在細胞附著及細胞侵入能力皆只有野生株的25%。將野生株與突變株同時與全血培養3小時比較兩者的抗吞噬能力,結果顯示突變株的抗吞噬能力約只有野生株的十分之一。從RT-PCR及莢膜分析發現突變株並不會影響莢膜與M protein的生成。再以2×108 CFU菌數感染BALB/c小鼠,野生株在感染後兩天內所有的小鼠全部死亡,而突變株感染小鼠後到第十天的存活率仍高達91%。綜合以上in vitro 和in vivo的結果,本研究證明DacA不僅具有盤尼西林結合能力,在化膿性鏈球菌感染的過程中也扮演很重要的角色。未來仍須進一步探討DacA的PBP功能以及以互補實驗證實dacA在化膿性鏈球菌的角色。
      寡胜肽膜透酶由五個蛋白組成,附著於細胞膜上屬於ABC-transporter群。先前的研究指出oppD和oppF突變會影響SpeB的表現,從氨基酸序列推測OppD和OppF可能是具有ATPase活性之細胞膜內附著蛋白。先前本實驗室的研究發現Opp具有雙重調節致病因子的角色,因此本研究擬進一步探討Opp是直接或間接活化蛋白進而調控其致病基因表現。首先將oppF基因構築於pET-21b表現載體,利用鎳離子親和管柱成功的得到重組r-OppF蛋白並經由西方點墨法確認。採用非放射性實驗測定r-OppF的ATPase活性,發現r-OppF水解ATP能力是隨時間和蛋白濃度比例增加。確認r-OppF具有ATPase活性後,利用免疫沈澱法也發現許多蛋白與OppF結合,其中四個蛋白經由蛋白質身份鑑定,其中一個蛋白推測為peroxide resistance protein。然而這些蛋白是如何與OppF結合以及這些蛋白是否會調控其他致病基因的表現仍須日後深入研究。

      Streptococcus pyogenes (Group A streptococcus, GAS) is the human pathogen that causes a variety of human diseases ranging from mild sore throat and skin infections to life-threatening necrotizing fasciitis and toxic shock syndrome. Although there are many virulence factors that have shown to be involved in GAS infection, the actual molecular mechanism of bacterial pathogenesis in GAS is far from clear. Penicillin-binding proteins (PBPs) in Gram-positive bacteria have not only shown to be involved in cell wall synthesis but also serve as a potential virulence factor in various animal models. Since the dacA gene of GAS is encoded with a putative penicillin-binding protein which is localized in the upstream region of the opp operon, we tested whether dacA has roles to serve as a penicillin-binding protein and as a virulence factor in GAS infection. First, we constructed an isogenic mutant by using integrational mutagenesis to disrupt the dacA gene and confirmed this by Southern blot and PCR analyses. The growth curves were not different between the wild-type strain and mutant. No polar effect was detected in the downstream of dacA by RT-PCR analysis. No difference of cell morphology was observed between mutant and wild-type strain using the scanning electronic microscope. When using the transmission electronic microscope, the mutant showed the pleat in the cell wall indicating it may be a thin cell wall. The minimal inhibitory concentration of penicillin in mutant and wild-type strain was less than 0.06 ug/ml. Second, we used fluorescent labeled penicillin to test whether DacA has a role as a penicillin-binding protein. The results showed that dacA mutant decreased the PBP4 and PBP5 affinity suggesting the DacA has a function as a penicillin-binding protein. Third, the dacA mutant did not affect SpeB expression that was analyzed by skim milk assay. However, the adhesion and invasion abilities of dacA mutant were about 75% less than those of the wild-type strain. When wild-type strain and dacA mutant incubated with heparinized whole blood for 3 h, the results demonstrated that the mutant had ten-fold decrease in antiphagocytosis activity than that of the wild-type strain. The RT-PCR analysis and hyaluronic acid measurement showed that the dacA mutant did not affect capsule and M protein expression. BAL/C mice were challenged with 2 × 108 CFU and results showed that mice infected with wild-type strain had 100% mortality after two days whereas those infected with dacA mutant had only 9% mortality after 10 days infection. Based on the in vitro and in vivo data, we demonstrate that DacA not only play a role as a penicillin-binding protein, but it also plays a role in bacterial virulence which contributes to the group A streptococcal infection. Further studies are needed to determine why DacA has a function as a PBP and verified the role of DacA in GAS by complementation assay.
      Oligopeptide permease (Opp) is a membrane-associated complex of five proteins (OppABCDF) belonging to the ABC-transporter family. Previous studies have demonstrated that mutations in oppD and oppF decrease the expression of SpeB. Analysis of the deduced amino acid sequences of the OppD and OppF indicated that it is a putative inner membrane associated with ATPase. Since we have found the Opp operon plays a dual role in regulation of virulence factors, we wonder if OppF may directly or indirectly activate responder proteins and regulate downstream of virulence factors. The oppF gene was cloned into pET-21b expression vector and r-OppF was expressed successfully. The r-OppF protein was purified by Ni2+-chelating column and confirmed by Western-blot analysis. We further tested whether r-OppF had the ATPase activity by non-isotope method and results revealed that r-OppF had ATPase activity. The ATPase activity was increased proportionally when protein concentrations and incubation times were increased. There were several proteins that interacted with r-OppF by immunoprecipitation method and four proteins were further identified. Among them, one protein was identified as a putative peroxide resistance protein. How this protein interacts with OppF and whether this protein has any effect on any virulence factors require further studies.

    中文摘要..........................................i 英文摘要........................................iii 誌謝..............................................v 目錄.............................................vi 表目錄...........................................ix 圖目錄............................................x 符號及縮寫......................................xii 緒論..............................................1 材料與方法.......................................10 一、菌種及動物來源...............................10 二、儀器與藥品...................................10 三、細菌的培養與保存.............................10 四、細胞的培養與保存.............................10 五、細菌DNA之抽取................................11 六、聚合酶連鎖反應(Polymerase chain reaction PCR).................................................12 七、洋菜膠體電泳.................................12 八、DNA片段之回收................................12 九、限制酶之切割及DNA之接合反應..................13 十、大腸桿菌勝任細胞(Competent cell)的製備.....13 十一、大腸桿菌細胞轉型作用(Transformation).....13 十二、電擊轉型作用(Electroporation)............14 十三、南方墨漬雜交法(Southern blotting hybridization)............................14 十四、生長曲線(Growth curve)的測定.............16 十五、細胞附著能力(Adhesion)...................16 十六、穿入細胞能力(Invasion)...................16 十七、化膿性鏈球菌之小鼠感染模式.................17 十八、盤尼西林G (penicillin G) 抗生素最小 抑制濃度測定...............................17 十九、化膿性鏈球菌莢膜玻尿酸(Hyaluronic acid) 含量的測定.................................17 二十 、抗吞噬能力的測試.........................18 二十一、化膿性鏈球菌RNA的萃取....................18 二十二、化膿性鏈球菌細胞質和細胞膜的萃取.........18 二十三、盤尼西林結合蛋白實驗(Penicillin-binding assay)..................................19 二十四、RT-PCR cDNA之製備........................19 二十五、電子顯微鏡之樣品製備與觀察...............20 二十六、重組蛋白之誘導(Induction)..............20 二十七、親合性鎳離子螯合樹脂色層分析法純化 重組蛋白質...............................20 二十八、重組蛋白質定量...........................21 二十九、多株抗體(Polyclonal antibody)之製備....22 三十 、利用ELISA方式測定兔子血清抗OppF效價......22 三十一、SDS-PAGE蛋白質膠體電泳...................22 三十二、西方點墨法 (Western blotting)............23 三十三、蛋白質膠體之銀染.........................23 三十四、ATPase assay.............................23 三十五、免疫沈澱法(Immunoprecipitation)........24 結果: 第一部份:dacA基因對化膿性鏈球菌感染過程的影響...25 一、DacA氨基酸序列比對.........................25 二、利用插入法構築dacA 基因突變株..............25 (1)利用streptococcal integrational vector 選殖dacA基因的中間片段....................26 (2)以electroporation 的方法將重組質體 送入化膿性鏈球菌..........................26 (3)利用PCR及南方點墨法(Southern hybridization)確認dacA基因突變株 的正確....................................26 (4)比較野生株與DacA突變株之生長曲線............27 (5)DacA突變株對於化膿性鏈球菌盤尼西林(Penicillin)的最小抑制濃度(MIC)的影響........27 三、DacA突變株降低penicillin-binding proteins對 penicillin的親和力.........................28 四、 dacA 基因對化膿性鏈球菌致病力的影響.......28 (1)蛋白水解酵素活性分析........................28 (2)細菌附著(Adhesion)至A549呼吸道上皮 細胞的能力..................................28 (3)侵入上皮細胞能力(Invasion)................29 (4)抗吞噬能力(Antiphagocytosis)..............29 (5)野生株與DacA突變株對動物之致死率 (in vivo mortality)........................29 (6)DacA對M protein 和莢膜(Capsule)的影 響..........................................30 五、dacA基因對於化膿性鏈球菌型態的影響...........30 第二部份:化膿性鏈球菌OppF蛋白質功能性分析.......32 一、構築oppF之蛋白質表現載體.....................32 二、His-tagged OppF蛋白之表現與純化..............33 三、抗r-OppF多株抗體之製備.......................33 四、r-OppF重組蛋白之ATPase酵素活性分析...........34 (1)對於鎂離子需求性分析........................34 (2)不同蛋白質劑量對於ATPase活性之分析..........34 (3)不同反應時間對於ATPase活性之分析............34 五、免疫沈澱法(Immunoprecipitation)............35 討論.............................................36 參考文獻.........................................41 圖表.............................................52 附錄.............................................78 自述.............................................99

    Akesson, P., Cooney, J., Kishimoto, F., and L. Bjöck. 1990. Protein H--a novel IgG binding bacterial protein. Mol. Immun. 27: 523-531.

    Akesson, P., Sjoholm, A. G., and L. Bjöck. 1996. Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J. Biol. Chem. 271: 1081-1088.

    Amezaga, M. R., Carter, P. E., Cash, P., and H. McKenzie. 2002. Molecular epidemiology of erythromycin resistance in Streptococcus pneumoniae isolates from blood and noninvasive sites. J. Clin. Microbiol. 40: 3313-3318.

    Bhakdi, S., Tranum-Jensen, J., and A. Sziegoleit. 1985. Mechanism of membrane damage by streptolysin-O. Infect. Immun. 47: 52-60.

    Bisno, A. L., Brito, M. O., and C. M. Collins. 2003. Molecular basis of group A streptococcal virulence. Lancet Infect. Dis. 3: 191-200.

    Borezee, E., E. Pellegrini, and P. Berche. 2000. OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect. Immun. 68: 7069-7077.

    Boyle, M. D., Hawlitzky J., Raeder R., and A. Podbielski. 1994. Analysis of genes encoding two unique type IIa immunoglobulin G-binding proteins expressed by a single group A streptococcal isolate. Infect. Immun. 62: 1336-1347.

    Broder, C. C., Lottenberg, R., and M. D. Boyle. 1989. Mapping of the human plasmin domain recognized by the unique plasmin receptor of group A streptococci. Infect. Immun. 57: 2597-2605.

    Carapetis, J., Gardiner, D., Currie, B., and J. D. Mathews. 1995. Multiple strains of Streptococcus pyogenes in skin sores of aboriginal Australians. J. Clin. Microbiol. 33: 1471-1472.

    Chassy, B. M., and E. V. Proter. 1979. A gentle method for the lysis of oral streptococci. Biochem. Biophy. Res. Commun. 68: 1956-1959.

    Cleary, P. P., Prahbu, U., Dale, J. B., Wexler, D. E., and J. Handley. 1992. Streptococcal C5a peptidase is a highly specific endopeptidase. Infect. Immun. 60: 5219-5223.
    Collin, M., Svensson, M. D., Sjoholm, A. G., Jensenius, J. C., Sjobring A., and U. Olsen. 2002. EndoS and SpeB from Streptococcus pyogenes inhibit immunoglobulin-mediated opsonophagocytosis. Infect. Immun. 70: 6646-6651.

    Cone, L. A., Woodhard, D. R., Schlivert, P. M., and G. S. Tomory. 1987. Clinical and bacteriologic observations of a toxic shock-like syndrome due to Streptococcus pyogenes. N. Engl. J. Med. 317: 146-149.

    Cundell, D. R., B. J. Pearce, J. Sandros, A. M. Naughton, and H. R. Masure. 1995. Peptide permeases from Streptococcus pneumoniae affect adherence to eucaryotic cells. Infect. Immun. 63: 2493-2498.

    Cywes, C, and M. R. Wessels. 2001. Group A streptococcus tissue invasion by CD44-mediated cell signalling. Nature 414: 648-652.

    Dajani, A., Taubert, K., Ferrieri, P., Peter, G., and S. Shulman. 1995. Treatment of acute streptococcal pharyngitis and prevention of rheumatic fever: a statement for health professionals. Pediatrics. 96: 758-764.

    Dale, J. B., Washburn, R. G., Marques, M. B., and M. R. Wessels. 1996. Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect. Immun. 64: 1495-1501.

    Di Guilmi, A. M., Dessen A., Dideberg O., and T. Vernet. 2003. Functional characterization of penicillin-binding protein 1b from Streptococcus pneumoniae. J. Bacteriol. 185: 1650-1658.

    Dowson, C. G., Hutchison A., Brannigan J. A., George R. C., Hansman D., Lin˜ares J., Tomasz A., Smith J. M., and B. G. Spratt. 1989. Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 86: 8842–8846.

    Duez, C., Hallut, S., Rhazi, N., Hubert, S., Amoroso, A., Bouillenne, F., Piette, A., and J. Coyette. 2004. The ponA gene of Enterococcus faecalis JH2-2 codes for a low-affinity class A penicillin-binding protein. J Bacteriol. 186: 4412-4416.
    Edwards, D. H., and W. D. Donachie. 1993. Construction of a triple deletion of penicillin-binding proteins 4, 5, and 6 in Escherichia coli, p. 369–374. In M. A. de Pedro, J.-V. Ho¨ltje, and W. Lo¨ffelhardt (ed.), Bacterial growth and lysis. Plenum Press, New York, N.Y.

    Errington, J., Daniel, R. A., and D. J. Scheffers. 2003. Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev. 67: 52-65.

    Ferretti, J. J., W. M. McShan, D. Ajdic, D. J. Savic, G. Savic, K. Lyon, C. Primeaux, S. Sezate, A. N. Suvorov, S. Kenton, H. S. Lai, S. P. Lin, Y. Qian, H. G. Jia, F. Z. Najar, Q. Ren, H. Zhu, L. Song, J. White, X. Yuan, S. W. Clifton, B. A. Roe, and R. McLaughlin. 2001. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 98: 4658-4663.

    Fischetti, V. A., Novick, R. P., Ferretti, J. J., Portnoy, D. A., and Rood, J. I. Eds. 2000. Surface proteins on Gram-positive bacteria. Washington DC: American Society for Microbiology. 11-24.

    Georgopapadakou, N. H. 1993. Penicillin-binding proteins and bacterial resistance to beta-lactams. Antimicrob Agents Chemother. 37: 2045-2053.

    Ghuysen, J.-M., and G. Dive. 1994. Biochemistry of the penicilloyl-serine transferases, p. 103–129. In J.-M. Ghuysen and R. Hakenbeck (ed.), Bacterial cell wall. Elsevier Sciences BV, Amsterdam, The Netherlands.

    Goffin, C., and J. M. Ghuysen. 1998. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62: 1079-1093.

    Gutmann, L., and A. Tomasz. 1982. Penicillin-resistant and penicillin-tolerant mutants of group A streptococci. Antimicrob Agents Chemother. 22: 128-136.

    Guzman, C. A., Talay, S. R., Molinari, G., Medina, E., and G. S. Chhatwal. 1999. Protective immune response against Streptococcus pyogenes in mice after intranasal vaccination with the fibrinectin-binding protein SfbI. J. Infect. Dis. 179: 901-906

    Hakenbeck, R. and J. Coyette. 1998. Resistant penicillin-binding proteins. Cell. Mol. Life Sci. 54: 332-340.

    Henkel, R. D., VandeBerg, J. L, and R. A. Walsh. 1988. A microassay for ATPase. Anal. Biochem. 169: 312-318.

    Hopfe, M., and B. Henrich. 2004. OppA, the substrate-binding subunit of the oligopeptide permease, is the major Ecto-ATPase of Mycoplasma hominis. J Bacteriol. 186: 1021-1028.

    Horstmann, R. D., Sievertsen, H. J., Knobloch, J., and V. A. Fischetti. 1988. Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc. Natl. Acad. Sci. USA 85: 1657–1661.

    Husmann, L. K., Yung, D. L., Hollingshead, S. K., and Scott, J. R. 1997. Role of putative virulence factors of Streptococcus pyogenes in mouse models of long-term throat colonization and pneumonia. Infect. Immun. 65: 1422-1430.

    Ish-Horowicz, D. and J. F. Burke. 1981. Rapid and efficient cosmid cloning. Nucleic Acids Res. 9: 2989-2998.

    Jenkinson, H. F. 1992. Adherence, coaggregation, and hydrophobicity of Streptococcus gordonii associated with expression of cell surface lipoproteins. Infect. Immun. 60: 1225-1228.

    Ji, Y., McLandsborough, A. K., and P. P. Cleary. 1996. C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect. Immun. 64: 503-510.

    Johnson, L. P., and P. M. Schlievert. 1984. Group A streptococcal phage T12 carriers the structural gene for pyrogenic exotoxin type A. Mol. Gen. Genet. 194: 52-56.

    Jones, A. L., Needham, R. H., Clancy, A., Knoll, K. M., and C. E. Rubens. 2003. Penicillin-binding proteins in Streptococcus agalactiae: a novel mechanism for evasion of immune clearance. Mol. Microbiol. 47: 247-256.

    Kamezawa, Y. T., Nakahara, T., Nakano, S., Abe, Y., Nozaki-Renard, J., and T. Isono. 1997. Streptococcal mitogenic exotoxin Z, a novel acidic superantigenic toxin produced by a T1 strain of Streptococcus pyogenes. Infect. Immun. 65: 3828-3833.

    Kapur, V., Topouzis, S., Majesky, M. W., Li, L. L., Hamrick, M. R., Hamill, R. J., Patti, J. M., and J. M. Musser. 1993. A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb. Pathog. 15: 327-346.

    Kataja, J., Huovinen, P., Skurnik, M., and H. Seppälä. 1999. Erythromycin resistance genes in group A streptococci in Finland. The finnish study group for antimicrobial resistance. Antimicrob. Agents Chemother. 43: 48-52.

    Kamezawa, Y. T., Nakahara, T., Nakano, S., Abe, Y., Nozaki-Renard, J., and T. Isono. 1997. Streptococcal mitogenic exotoxin Z, a novel acidic superantigenic toxin produced by a T1 strain of Streptococcus pyogenes. Infect. Immun. 65: 3828-3833.

    Kawabata, S., Tamura, Y., Murakami, J., Terao, Y., Nakagawa, I., and S. Hamada. 2002. A novel, anchorless streptococcal surface protein that binds to human immunoglobulins. Biochem. Biophys. Res. Commun. 296: 1329-1333.

    Krauss, J., and R. Hakenbeck. 1997. A mutation in D, D-carboxypeptidase penicillin-binding protein 3 of Streptococcus pneumoniae contributes to cefotaxime resistance of the laboratory mutant C604. Antimicrob. Agents Chemother. 41: 936-942.

    Kuo, C. F., Wu, J. J., Lin, K. Y., Tsai, P. J., Lee, S. C., Jin, Y. T., Lei, J. Y., and Y. S. Lin. 1998. Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect. Immun. 66: 3931-3935.

    Kunji, E. R. S., Hagting, A., de Vries, C. J., Juillard, V., Handrikman, A. J., Poolman, B., and Konings, W. N. 1995. Transport of -casein-derived peptides by the oligopeptide transport system is crucial step in the proteolytic pathway of Lactococcus lactis. J. Biol. Chem. 270: 1569-1574.

    Laible, G., B. G. Spratt, and R. Hakenbeck. 1991. Inter-species recombinational events during the evolution of altered PBP 2x genes in penicillin resistant clinical isolates of Streptococcus pneumoniae. Mol. Microbiol. 5: 1993–2002.

    Laible, G., and R. Hakenbeck. 1987. Penicillin-binding proteins in -lactam-resistant laboratory mutants of Streptococcus pneumoniae. Mol. Microbiol. 1: 355-363.
    Lancefield, R. C. 1962. Current knowledge of the type specific M antigens of group A streptococci. J. Immunol. 89: 307-313.

    Lau, G. W., Haataja, S., Lonetto, M., Kensit, S. E., Marra, A., and A. P. Bryant, et al. 2001. A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol. Microbiol. 40: 555-571.

    Leonard, B. A., A. Podbielski, P. J. Hedberg, and G. M. Dunny. 1996. Enterococcus faecalis pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation. Proc. Natl. Acad. Sci.U S A 93: 260-264.

    Lin, B., Short, S. A., Eskildsen, M., Klempner, M. S., and L. T. Hu. 2001. Functional testing of putative oligopeptide permease (Opp) proteins of Borrelia burgdorferi: a complementation model in opp(-) Escherichia coli. Biochim. Biophys. Acta. 15: 222-231.

    Lowe, A. M., Beattie, D. T., and R. L. Deresiewicz. 1998. Identification of novel staphylococcal virulence genes by in vivo expression technology. Mol. Microbiol. 27: 967-976.

    Luis, M., Perea, M., Alma, E., Inzunza, M., and C. Alejandro. 2002. Molecular characterization of group A streptococcus strains isolated during a scarlet fever outbreak. J. Clin. Microbiol. 40: 278-280.

    Malke, H. 1993. Polymorphism of the SK gene: implications for the pathogenesis of post-streptococcal glomerulonephritis. Int. J. Med. Microbiol. Virol. Parasitol. Infect. Dis. 278: 246–257.

    Malouin, F. and L. E. Bryan. 1986. Modification of penicillin-binding proteins as mechanisms of resistance to lactam antibiotics. Antimicrob. Agents Chemother. 30: 1-5.

    Martin, C., Sibold, C., and R. Hakenbeck. 1992. Relatedness of penicillin-binding protein 1a genes from different clones of penicillin-resistant Streptococcus pneumoniae isolated in South Africa and Spain. EMBO J. 11: 3831 -3836.

    Mascini, E. M., Jansze, M., Schouls, L. M., Fluit, A. C., Verhoef, J., and H. V. Dijk. 1999. Invasive and noninvasive group A streptococcal isolates with different speA alleles in the Netherlands: genetic relatedness and production of pyrogenic exotoxins A and B. J. Clin. Microbiol. 37: 3469-3474.

    McClintock, D. K., and P. H. Bell. 1971. The mechanism of activation of human plasminogen by streptokinase. Biochem. Biophys. Res. Commun. 43: 694-702.

    McShan, W. M., and J. J. Ferretti. 1997. Genetic diversity in temperate bacteriophages of Streptococcus pyogenes: identification of a second attachment site for phages carrying the erythrogenic toxin A gene. J. Bacteriol. 179: 6509-6511.

    Mei, J., Nourbakhsh, F., Ford, C. W., and D. W. Holden. 1997. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature tagged mutagenesis. Mol. Microbiol. 26: 399–407.

    Milner, J. S., Dymock, D., Cooper, R. M., and I. S. Roberts. 1993. Penicillin-binding proteins from Erwinia amylovora: mutants lacking PBP2 are avirulent. J. Bacteriol. 175: 6082-6088.

    Momma, K., Okamoto M., Mishima Y., Mori S., Hashimoto W., and K. Murata. 2000. A novel bacterial ATP-binding cassette (ABC) transporter system that allows uptake of macromolecules. J. Bacteriol. 182: 3998-4004.

    Morrison, D. A. 1979. Transformation and preservation of competent bacteria cells by freezing. Methods Enzymol. 68: 326-331.

    Musser, J. M., Kapur, V., Szeto, J., Pan, X., Swanson, D. S., and D. R. Martin. 1995. Genetic diversity and relationships among Streptococcus pyogenes strains expressing serotype M1 protein: recent intercontinental spread of a subclone causing episodes of invasive disease. Infect. Immun. 63: 994-1003.

    Ohara-Nemoto, Y., M. Sasaki, M. Kaneko, T. Nemoto, and M. Ota. 1994. Cysteine protease activity of streptococcal pyrogenic exotoxin B. Can. J. Microbiol 40: 930-936.

    Okada, N., Liszewski, M., Atkinson, J., and Caparon, M. G. 1995. Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A streptococcus. Proc. Natl. Acad. Sci. USA 92: 2489-2493.

    Perez-Casal, J., M. G. Caparon, and J. R. Scott. 1991. Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems. J. Bacteriol. 173: 2617-2624.

    Pinho, M. G., H. de Lencastre, and A. Tomasz. 1998. Transcriptional analysis of the Staphylococcus aureus penicillin binding protein 2 gene. J. Bacteriol. 180: 6077-6081.

    Pinho, M. G., S. R. Filipe, H. de Lencastre, and A. Tomasz. 2001. Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus. J. Bacteriol. 183: 6525-6531.

    Pinkney, M., Kapur, V., Smith, J., Weller, U., Palmer, M., Glanville, M., Messner, M., Musser, J. M., Bhakdi, S., and M. A. Kehoe. 1995. Different forms of streptolysin O produced by Streptococcus pyogenes and by Escherichia coli expressing recombinant toxin: cleavage by streptococcal cysteine protease. Infect. Immun. 63: 2776-2779.

    Podbielski, A., Pohl, B., Woischnik, M., Korner, C., Schmidt, K., Rozdzinski, E., and B. Leonard. 1996. Molecular characterization of group A streptococcal (GAS) oligopeptide permease (Opp) and its effect on cysteine protease production. Mol. Microbiol. 21: 1087-1099.

    Podbielski, A., M. Woischnik, B. Pohl, and K. H. Schmidt. 1996. What is the size of the group A streptococcal vir regulon? The Mga regulator affects expression of secreted and surface virulence factors. Med. Microbiol. Immunol. 185: 171-81.

    Podbielski, A., Woischnik, M., Leonard B. A., and K. H. Schmidt. 1999. Characterization of nra, a global negative regulator gene in group A streptococci. Mol. Microbiol. 31: 1051-1064.

    Polissi, A., Pontiggia, A., Feger, G., Altieiri, M., Mottl, H., Ferrari, L., and D. Simon. 1998. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66: 5620–5629.

    Rachel, N. 1994. Flesh-eating bacteria: not new, but still worrisome. Science. 264: 1665.

    Raeder, R., Faulmann, E. L., and M. D. Boyle. 1991. Evidence for functional heterogeneity in IgG Fc-binding proteins associated with group A streprococci. J. Immunol. 146: 1247-1453.

    Reed, K. C., and D. A. Mann. 1985. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acid Res. 13:7207-7221.

    Sambrook, J., Firtsch, E. F., and T. Maniatis. 1989. Molecular cloning : A laboratory manual. 6th ed. Cold spring Harbor Laboratory Press, Cold spring Harbor, N. Y.

    Schnitzler, J. Y., DeMaster, N. E., and P. Cleary. 1998. Impact of M49, Mrp, Enn, and C5a peptidase proteins on colonization of the mouse oral mucosa by Streptococcus pyogenes. Infect. Immun. 66: 5399–5405.

    Schrager, H. M., Alberti, C. C, Dougherty, G. J. and M. R. Wessels. 1998. Hyaluronic acid capsule modulate M protein-mediated adherence and acts as a ligand for attachment of group A streptococcus to CD44 on human keratinocytes. J. Clin. Invest. 101: 1708-1719.

    Schulze, K., Medina, E., Chhatwal, G. S., and C. A. Guzman. 2003. Stimulation of long-lasting protection against Streptococcus pyogenes after intranasal vaccination with non adjuvanted fibronectin-binding domain of the SfbI protein. Vaccine. 21: 1967-1973.

    Sekiya, K., Satoh, R., Danbara, H., and Y. Futaesaku. 1993. A ring-shaped structure with a crown formed by streptolysin-O on the erythrocyte membrane. J. Bacteriol. 175: 5953-5961.

    Simon, D., and J. J. Ferretti. 1991. Electrotransformation of Streptococcus pyogenes with plasmid and linear DNA. FEMS Microbio. Let. 82: 219-224.

    Solomon, J. M., R. Magnuson, A. Srivastava, and A. D. Grossman. 1995. Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes. Dev. 9: 547-958.

    Sonia, C., Nahla I. Y., Rita, G.. K., Farukh, K., Hesham, B., Anna, N. T., Donald, E. L., Allison, M., and K. Malak. 2000. Genetic relatedness and superantigen expression in group A streptococcus serotype M1 isolates from patients with severe and nonsevere invasive diseases. Infect. Immun. 68: 3523–3534.

    Speziale, P., Höök, M., Switalski, L. M., and T. Wadström. 1984. Fibronectin binding to a Streptococcus pyogenes strain. J. Bacteriol. 157: 420-427.

    Stanley, J., Linton, D., Desai, M., Efstratiou, A., and R. George. 1995. Molecular subtyping of prevalent M serotypes of Streptococcus pyogenes causing invasive disease. J. Clin. Microbiol. 33: 2850-2855.

    Stevens, D. L., Tanner, M. H., Winship, J., Swarts, R., Ries, K. M., Schlievert, P. M. and E. Kaplan. 1989. Severe group A streptococcus infections associated with a toxic shock-like syndrome and scarlet fever toxin A. N. Engl. J. Med. 321: 1-7.

    Stevens, D. L. 1992. Invasive group A streptococcus infections. Clin. Infect. Dis. 14: 2-13.

    Stevens, D. L., A. E. Bryant, S. P. Hackett, A. Chang, G. Peer, S. Kosanke, T. Emerson, and L. Hinshaw. 1996. Group A streptococcal bacteremia: the role of tumor necrosis factor in shock and organ failure. J. Infect. Dis. 173: 619-626.

    Tam, R., and M.H. Saier. 1993. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Jr. Microbiol Rev. 57: 320-346.

    Thern, A., Wästfelt, M., and G. Lindahl. 1998. Expression of two different antiphagocytic M proteins by Streptococcus pyogenes of the OF+ lineage. J. Immunol. 160: 860-869.

    Toyosaki, T., Yoshioka, T., Tsuruta, Y., Yutsudo, T., Iwasaki, M, and R. Suzuki. 1996. Definition of the mitogenic factor (MF) as a novel streptococcal superantigen that is different from Streptococcal pyrogenic exotoxins A, B, and C. Eur. J. Immunol. 26: 2693-2701.

    Tuomanen, E. 1986. Phenotypic tolerance: the search for beta-lactam antibiotics that kill nongrowing bacteria. Rev Infect Dis. 8 Suppl 3: S279-291.

    Tynkkynen, S., G. Buist, E. Kunji, J. Kok, B. Poolman, G. Venema, and A. Haandrikman. 1993. Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J. Bacteriol. 175: 7523-7532.

    Wann, S. R., Ten, M. Y., Chen, Y. S., Wang, J. H., Huang, W. K., Huang, T. S., Wang, J. H., Lin, Y. C. and D. L. Cheng. 1995. Streptococcal toxic shock syndrome in Southern Taiwan. J. Formos. Med. Assoc. 94: 172- 177.

    Wexler, D. E., Chenoweth, D. E., and P. P. Cleary. 1985. Mechanism of action of the group A streptococcal C5a inactivator. Proc. Natl. Acad. Sci. USA. 82: 8144- 8148.

    Whitnack, E., and E. H. Beachey. 1985. Inhibition of complement-mediated opsonization and phagocytosis of Streptococcus pyogenes by D fragments of fibrinogen and fibrin bound to cell surface M protein. J. Exp. Med. 162: 1983–1997.

    van Asselt, G. J., de Kort, G., and J. A. van de Klundert. 1995. Differences in penicillin-binding protein patterns of penicillin tolerant and non-tolerant group A streptococci. J. Antimicrob. Chemother. 35: 67-74.

    行政院衛生署疫情報導 1996. 噬肉菌- A 群鏈球菌感染性壞疽-在台灣之現況分析12 (7): 201-211.

    林桂媛 1997. Study of the speB gene in Streptococcus pyogenes. 國立成功大學微生物及免疫學研究所碩士論文

    林家伃 2002. Roles of oligopeptide permease、streptolysin S and streptolysin O of Streptococcus pyogenes infection in the murine model. 國立成功大學微生物及免疫學研究所碩士論文

    張瓅今 2003. Identification and characterization of AgaD gene in Streptococcus pyogenes. 私立慈濟大學醫學研究所碩士論文

    下載圖示 校內:2005-08-25公開
    校外:2005-08-25公開
    QR CODE