簡易檢索 / 詳目顯示

研究生: 蔡明峻
Tsai, Ming-Chun
論文名稱: 氧化銅鉍用於(光)轉化纖維素之研究
On the application of CuBi2O4 for the (photo-)electrochemical reforming of cellulose
指導教授: 林家裕
Lin, Chia-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 63
中文關鍵詞: 氧化銅鉍纖維素氧化電催化光轉化
外文關鍵詞: CuBi2O4, Cellulose oxidation, Electrocatalysis, Photoreforming
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以奈米柱狀氧化銅鉍(nanoCuBi2O4),於鹼性環境下進行纖維素氧化,而再將CuBi2O4修飾於二氧化鈦上,用於光轉化系統來進行纖維素氧化。實驗所用試片之物化性是透過掃描式電子顯微鏡、X-射線繞射分析儀及紫外光-可見光分光光譜儀進行分析。電化學特性則使用線性掃描伏安法、循環伏安法分析,並進行定電位電解,透過離子層析儀對產物進行分析。透過研究結果,nanoCuBi2O4,施加1.6V(vs RHE),定電位電解於0.1M氫氧化鈉纖維素溶液中,對甲酸有最高的法拉第效率,81.79%。而當CuBi2O4修飾於二氧化鈦上,在光轉化纖維素的系統中,對甲酸的法拉第效率從25.19%上升至82.68%,且生產甲酸的量比上述nanoCuBi2O4電催化纖維素之系統相比更高,而施加的電位,透過照光利用光能,由1.6V(vs RHE)下降到0.5V(vs RHE),減少了1.1V,達成了更綠能的光轉化纖維素系統。

    In this study, nanostructure columnar copper bismuth oxide (nanoCuBi2O4) was used to oxidize cellulose in an alkaline condition, and CuBi2O4 was modified on titanium dioxide for a photoreforming system to oxidize cellulose. The physical and chemical properties were characterized with scanning electron microscope, X-ray diffraction analyzer and ultraviolet-visible diffuse reflectance. The electrochemical characteristics were analyzed by linear scanning voltammetry and cyclic voltammetry, and chronoamperometry electrolysis , the product was analyzed by an ion chromatography. In the results of this research, nano CuBi2O4, chronoamperometry electrolysis in 0.1 M sodium hydroxide solution containing cellulose, when it was applied at 1.6 V (vs RHE), it has the highest Faraday efficiency for formic acid, 81.79%. After CuBi2O4 is modified on titanium dioxide(TiO2), the Faraday efficiency for formic acid increases from 25.19% to 82.68% in the photoreforming cellulose system, and the amount of formic acid produced is higher than nanoCuBi2O4 electrocatalytic cellulose oxidation system. The applied potential, through the use of light energy, reduces from 1.6 V (vs RHE) to 0.5 V (vs RHE), a decrease of 1.1 V, achieving a greener, eco-friendly photoreforming cellulose system.

    摘要 I Extended Abstract II 致謝 VII 總目錄 VIII 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章 文獻回顧 4 2.1 生質能氧化 4 2.2 生質能氧化產生甲酸 6 2.3 光轉化 8 2.4 材料介紹 11 2.4.1 氧化銅鉍 11 2.4.2 二氧化鈦 13 第三章 實驗 17 3.1 藥品與設備 17 3.1.1 藥品 17 3.1.2 設備 19 3.2 實驗步驟 20 3.2.1 FTO基板清洗 20 3.2.2 奈米柱狀氧化銅鉍之合成 20 3.2.3二氧化鈦之合成 21 3.2.4 銅鉍修飾之二氧化鈦 21 3.3 纖維素電解液製備 22 3.4 電催化及光轉化系統 22 第四章 結果與討論 24 4.1 氧化銅鉍電催化纖維素 24 4.1.1 氧化銅鉍之形貌與相態分析 24 4.1.2 氫氧化鈉濃度對氧化銅鉍電催化纖維素之影響探討 27 4.1.3 電位對對氧化銅鉍電催化纖維素之影響探討 30 4.2 奈米柱狀與奈米顆粒二氧化鈦用於光轉化纖維素 32 4.2.1 奈米柱狀與奈米顆粒二氧化鈦形貌與相態分析 33 4.2.2 奈米柱狀與奈米顆粒二氧化鈦光電特性分析 35 4.3 氧化銅鉍修飾之二氧化鈦光轉化纖維素 38 4.3.1 氧化銅鉍修飾之二氧化鈦形貌與相態分析 38 4.3.2 氧化銅鉍修飾之二氧化鈦光電特性分析 41 第五章 結論與未來展望 47 5.1 結論 47 5.2 未來展望 48 第六章 參考文獻 49

    [1] X. Liu, X. Duan, W. Wei, S. Wang, B.-J. Ni, Green Chemistry 21 (2019) 4266-4289.
    [2] L. Clarizia, D. Spasiano, I. Di Somma, R. Marotta, R. Andreozzi, D.D. Dionysiou, International Journal of Hydrogen Energy 39 (2014) 16812-16831.
    [3] D. Wakerley, M. Kuehnel, K. Orchard, H. Ly, T. Rosser, E. Reisner, Nature Energy 2 (2017) 17021.
    [4] P. Parthasarathy, S. Narayanan, Renewable Energy 66 (2014) 570-579.
    [5] F. Jin, J. Yun, G. Li, A. Kishita, K. Tohji, H. Enomoto, Green Chemistry 10 (2008) 612-615.
    [6] T. Lu, M. Niu, Y. Hou, W. Wu, S. Ren, F. Yang, Green Chemistry 18 (2016) 4725-4732.
    [7] M. Niu, Y. Hou, S. Ren, W. Wu, K.N. Marsh, Green Chemistry 17 (2015) 453-459.
    [8] Y. Sugano, M.d. Vestergaard, H. Yoshikawa, M. Saito, E. Tamiya, Electroanalysis 22 (2010) 1688-1694.
    [9] C. Dai, L. Sun, H. Liao, B. Khezri, R.D. Webster, A.C. Fisher, Z.J. Xu, Journal of Catalysis 356 (2017) 14-21.
    [10] Y. Sugano, T. Saloranta, J. Bobacka, A. Ivaska, Physical Chemistry Chemical Physics 17 (2015) 11609-11614.
    [11] M. Berger, D. Assenbaum, N. Taccardi, E. Spiecker, P. Wasserscheid, Green Chem. 13 (2011) 1411-1415.
    [12] T. Zell, B. Butschke, Y. Ben-David, D. Milstein, Chemistry (Weinheim an der Bergstrasse, Germany) 19 (2013) 8068-8072.
    [13] B. Wu, E. Onno, C.-Y. Lin, Electrochimica Acta 229 (2017) 129-140.
    [14] C.-Y. Lin, S.-Y. Lin, M.-C. Tsai, C.-H. Wu, Sustainable Energy & Fuels 4 (2020) 625-632.
    [15] A. Pinkert, K.N. Marsh, S. Pang, M.P. Staiger, Chemical Reviews 109 (2009) 6712-6728.
    [16] P. Azadi, O.R. Inderwildi, R. Farnood, D.A. King, Renewable and Sustainable Energy Reviews 21 (2013) 506-523.
    [17] O. Lanzalunga, M. Bietti, Journal of photochemistry and photobiology. B, Biology 56 (2000) 85-108.
    [18] H. Xiao, M. Wu, G. Zhao, Catalysts 6 (2016).
    [19] A. Fukuoka, P.L. Dhepe, Angewandte Chemie International Edition 45 (2006) 5161-5163.
    [20] A. Caravaca, W. Jones, C. Hardacre, M. Bowker, Proc Math Phys Eng Sci 472 (2016) 20160054.
    [21] A.V. Puga, A. Forneli, H. García, A. Corma, Advanced Functional Materials 24 (2014) 241-248.
    [22] B. Jin, G. Yao, X. Wang, K. Ding, F. Jin, ACS Sustainable Chemistry & Engineering 5 (2017) 6377-6381.
    [23] J. Tang, Y. Wang, J. Li, P. Da, J. Geng, G. Zheng, Journal of Materials Chemistry A 2 (2014) 6153-6157.
    [24] X. Zhang, L. Luo, R. Yun, M. Pu, B. Zhang, X. Xiang, ACS Sustainable Chemistry & Engineering 7 (2019) 13856-13864.
    [25] A. Boddien, D. Mellmann, F. Gärtner, R. Jackstell, H. Junge, P.J. Dyson, G. Laurenczy, R. Ludwig, M. Beller, Science 333 (2011) 1733.
    [26] C.Y. Lin, Y.C. Chueh, C.H. Wu, Chem Commun (Camb) 53 (2017) 7345-7348.
    [27] J. Xu, Y. Zhao, H. Xu, H. Zhang, B. Yu, L. Hao, Z. Liu, Applied Catalysis B: Environmental 154-155 (2014) 267-273.
    [28] H. Mehdi, V. Fabos, R. Tuba, A. Bodor, L. Mika, I. Horvath, Topics in Catalysis 48 (2008) 49-54.
    [29] Y. Hou, Z. Lin, M. Niu, S. Ren, W. Wu, ACS Omega 3 (2018) 14910-14917.
    [30] A. Chang, W.-S. Peng, I.T. Tsai, L.-F. Chiang, C.-M. Yang, Applied Catalysis B: Environmental 255 (2019) 117773.
    [31] H. Huang, J. Feng, S. Zhang, H. Zhang, X. Wang, T. Yu, C. Chen, Z. Yi, J. Ye, Z. Li, Z. Zou, Applied Catalysis B: Environmental 272 (2020) 118980.
    [32] A. Speltini, M. Sturini, D. Dondi, E. Annovazzi, F. Maraschi, V. Caratto, A. Profumo, A. Buttafava, Photochemical & Photobiological Sciences 13 (2014) 1410-1419.
    [33] C. Li, H. Wang, S.B. Naghadeh, J.Z. Zhang, P. Fang, Applied Catalysis B: Environmental 227 (2018) 229-239.
    [34] X. Wu, X. Fan, S. Xie, J. Lin, J. Cheng, Q. Zhang, L. Chen, Y. Wang, Nature Catalysis 1 (2018) 772-780.
    [35] K. Chen, M. Cao, C. Ding, X. Zheng, RSC Advances 8 (2018) 26782-26792.
    [36] H. Li, Z. Lei, C. Liu, Z. Zhang, B. Lu, Bioresource Technology 175 (2015) 494-501.
    [37] W. Liu, Y. Cui, X. Du, Z. Zhang, Z. Chao, Y. Deng, Energy & Environmental Science 9 (2016) 467-472.
    [38] H. Kasap, D.S. Achilleos, A. Huang, E. Reisner, Journal of the American Chemical Society 140 (2018) 11604-11607.
    [39] Q. Wu, Y. He, H. Zhang, Z. Feng, Y. Wu, T. Wu, Molecular Catalysis 436 (2017) 10-18.
    [40] S.P. Berglund, F.F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, R. van de Krol, Chemistry of Materials 28 (2016) 4231-4242.
    [41] S.P. Berglund, H.C. Lee, P.D. Núñez, A.J. Bard, C.B. Mullins, Physical Chemistry Chemical Physics 15 (2013) 4554-4565.
    [42] N.T. Hahn, V.C. Holmberg, B.A. Korgel, C.B. Mullins, The Journal of Physical Chemistry C 116 (2012) 6459-6466.
    [43] G. Sharma, Z. Zhao, P. Sarker, B.A. Nail, J. Wang, M.N. Huda, F.E. Osterloh, Journal of Materials Chemistry A 4 (2016) 2936-2942.
    [44] D. Kang, J.C. Hill, Y. Park, K.-S. Choi, Chemistry of Materials 28 (2016) 4331-4340.
    [45] H.S. Park, C.-Y. Lee, E. Reisner, Physical Chemistry Chemical Physics 16 (2014) 22462-22465.
    [46] D. Cao, N. Nasori, Z. Wang, Y. Mi, L. Wen, Y. Yang, S. Qu, Z. Wang, Y. Lei, Journal of Materials Chemistry A 4 (2016) 8995-9001.
    [47] N. Wetchakun, B. Incessungvorn, K. Wetchakun, S. Phanichphant, Materials Letters 82 (2012) 195-198.
    [48] Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chemical Reviews 114 (2014) 9987-10043.
    [49] A.I. Kontos, A.G. Kontos, D.S. Tsoukleris, M.-C. Bernard, N. Spyrellis, P. Falaras, Journal of Materials Processing Technology 196 (2008) 243-248.
    [50] S. Sadikin, International Journal of Electrochemical Science 12 (2017) 5529-5538.
    [51] M. Jithin, K. Saravanakumar, V. Ganesan, V.R. Reddy, P.M. Razad, M.M. Patidar, K. Jeyadheepan, G. Marimuthu, V.R. Sreelakshmi, K. Mahalakshmi, Superlattices and Microstructures 109 (2017) 145-153.
    [52] W. Qi, J. Du, Y. Peng, W. Wu, Z. Zhang, X. Li, K. Li, K. Zhang, C. Gong, M. Luo, H. Peng, Materials Chemistry and Physics 207 (2018) 435-441.
    [53] C.-Y. Lee, A.C. Taylor, S. Beirne, G.G. Wallace, Advanced Energy Materials 7 (2017) 1701060.
    [54] T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, Journal of Catalysis 203 (2001) 82-86.
    [55] D. Scanlon, C. Dunnill, J. Buckeridge, S. Shevlin, A. Logsdail, S. Woodley, R. Catlow, M. Powell, R. Palgrave, I. Parkin, G. Watson, T. Keal, P. Sherwood, A. Walsh, A. Sokol, Nature materials 12 (2013) 798.

    無法下載圖示 校內:2030-09-03公開
    校外:2030-09-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE