簡易檢索 / 詳目顯示

研究生: 林宥天
Lin, Yu-Tein
論文名稱: 探討宿主ITGB1基因轉錄因子與細菌ImaA胺基酸多型性在幽門桿菌感染後調控宿主細胞表面接受體α5β1表現
The study of transcription factors of host ITGB1 gene and bacterial ImaA amino acid polymorphisms in regulating host integrin α5β1 expression after H. pylori infection
指導教授: 鄭修琦
Cheng, Hsiu-Chi
蔣輯武
Chiang, Chi-Wu
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 40
中文關鍵詞: 幽門桿菌整合素α5β1ImaA胺基酸多型性The high mobility group A1 (HMGA1)SPTY2D1ITGB1
外文關鍵詞: Helicobacter pylori, Integrin α5β1, ImaA amino acid polymorphisms, The high mobility group A1 (HMGA1), SPTY2D1, ITGB1
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I 一 、緒論 1 1.1 前言 1 1.2 胃癌 1 1.3 幽門螺旋桿菌致癌機制 2 1.4 幽門螺旋桿菌與宿主胃上皮細胞整合素α5β1交互作用 4 二 、研究目的 7 三、材料與方法 8 3.1臨床研究對象以及幽門螺旋桿菌檢體收集 8 3.2實驗菌種、質體 8 3.3細菌及細胞株保存及培養 8 3.4 幽門螺旋桿菌與胃上皮細胞共培養(co-culture)實驗 9 3.5宿主ITGB1及相關轉錄因子基因表現分析 9 3.6宿主ITGB1及相關轉錄因子蛋白質表現分析 10 3.7宿主ITGB1啟動子 (promotor)活性分析 11 3.8 染色質免疫沉澱 (Chromatin Immunoprecipitation assay, ChIP assay) 13 四、實驗結果 15 4.1 宿主ITGB1轉錄相關轉錄因子預測 15 4.2 幽門螺旋桿菌在AGS細胞中促進ITGB1與預期相關轉錄因子表達 16 4.3 利用報導質體分析幽門螺旋桿菌感染是否能調控相關轉錄因子以促進AGS細胞株中ITGB1的啟動子活性。 16 4.4. ITGB1相關轉錄因子HMGA1、SPTY2D1與ITGB1啟動子結合位點分析。 17 4.5 分析幽門螺旋桿菌ImaA胺基酸多樣性與胃部臨床病徵相關性。 18 五、討論 20 5.1 幽門螺旋桿菌誘導整合素α5β1表現及ImaA胺基酸多樣性與胃部臨床病徵相關性。 20 5.2 ImaA胺基酸多樣性two-type region與宿主胃癌相關癌前病變相關性。 21 六、結論 23 七、圖與表 24 圖一、利用生物資訊學預測ITGB1相關的轉錄因子。 24 圖二、分析AGS細胞株中ITGB1以及相關轉錄因子基因表現量。 25 圖三、分析AGS細胞株中ITGB1以及相關轉錄因子蛋白質表現量。 26 圖四、利用報導質體分析AGS細胞株中ITGB1的啟動子活性。 27 圖五、分析AGS細胞株中ITGB1相關轉錄因子與啟動子結合位點。 28 圖六、幽門螺旋桿菌ImaA“The two-type region”序列。 29 圖七、幽門螺旋桿菌與宿主胃上皮細胞中整合素α5β1交互作用預測圖。 30 表一、分析幽門螺旋桿菌臨床菌株ImaA two-type region與Integrin α5β1 表現與癌前病變之關連性。 31 表二、分析幽門螺旋桿菌臨床菌株ImaA 胺基酸多樣性與癌前病變指標及胃癌之關連性。 32 表三、分析幽門螺旋桿菌臨床菌株ImaA 胺基酸多樣性與胃部炎症指標及及胃癌之關連性。 33 八、附錄 34 附錄一、先前實驗室所建構報導質體及ITGB1啟動子活性報導質體。 34 附錄二、本研究所使用PCR primer。 35 九、參考文獻 38

    1. Waldum, H.L. and R. Fossmark, Types of Gastric Carcinomas. Int J Mol Sci, 2018. 19(12).
    2. Lin, Y.T., et al., Secular decreasing trends in gastric cancer incidence in Taiwan: A population-based cancer registry study. World J Gastroenterol, 2021. 27(34): p. 5764-5774.
    3. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249.
    4. Lochhead, P. and E.M. El-Omar, Gastric cancer. Br Med Bull, 2008. 85: p. 87-100.
    5. Lauren, P., The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. An Attempt at a Histo-Clinical Classification. Acta Pathol Microbiol Scand, 1965. 64: p. 31-49.
    6. Chen, Y.C., et al., Clinicopathological Variation of Lauren Classification in Gastric Cancer. Pathol Oncol Res, 2016. 22(1): p. 197-202.
    7. Oliveira, C., et al., Familial gastric cancer: genetic susceptibility, pathology, and implications for management. Lancet Oncol, 2015. 16(2): p. e60-70.
    8. Zheng, H., et al., Pathobiological characteristics of intestinal and diffuse-type gastric carcinoma in Japan: an immunostaining study on the tissue microarray. J Clin Pathol, 2007. 60(3): p. 273-7.
    9. Nardone, G., A. Rocco, and P. Malfertheiner, Review article: helicobacter pylori and molecular events in precancerous gastric lesions. Aliment Pharmacol Ther, 2004. 20(3): p. 261-70.
    10. Salama, N.R., Cell morphology as a virulence determinant: lessons from Helicobacter pylori. Curr Opin Microbiol, 2020. 54: p. 11-17.
    11. Hanafiah, A. and B.S. Lopes, Genetic diversity and virulence characteristics of Helicobacter pylori isolates in different human ethnic groups. Infect Genet Evol, 2020. 78: p. 104135.
    12. Saxena, A., A.K. Mukhopadhyay, and S.P. Nandi, Helicobacter pylori: Perturbation and restoration of gut microbiome. J Biosci, 2020. 45(1).
    13. Blaser, M.J., An endangered species in the stomach. Sci Am, 2005. 292(2): p. 38-45.
    14. Suerbaum, S. and P. Michetti, Helicobacter pylori infection. N Engl J Med, 2002. 347(15): p. 1175-86.
    15. Sabbagh, P., et al., Helicobacter pylori infection in children: an overview of diagnostic methods. Eur J Clin Microbiol Infect Dis, 2019. 38(6): p. 1035-1045.
    16. Alexander, S.M., et al., Helicobacter pylori in Human Stomach: The Inconsistencies in Clinical Outcomes and the Probable Causes. Front Microbiol, 2021. 12: p. 713955.
    17. World Gastroenterology, O., World Gastroenterology Organisation Global Guideline: Helicobacter pylori in developing countries. J Clin Gastroenterol, 2011. 45(5): p. 383-8.
    18. Waskito, L.A. and Y. Yamaoka, The Story of Helicobacter pylori: Depicting Human Migrations from the Phylogeography. Adv Exp Med Biol, 2019. 1149: p. 1-16.
    19. Reshetnyak, V.I., A.I. Burmistrov, and I.V. Maev, Helicobacter pylori: Commensal, symbiont or pathogen? World J Gastroenterol, 2021. 27(7): p. 545-560.
    20. de Brito, B.B., et al., Pathogenesis and clinical management of Helicobacter pylori gastric infection. World J Gastroenterol, 2019. 25(37): p. 5578-5589.
    21. Clyne, M., et al., Adherence of isogenic flagellum-negative mutants of Helicobacter pylori and Helicobacter mustelae to human and ferret gastric epithelial cells. Infect Immun, 2000. 68(7): p. 4335-9.
    22. Garcia, A., et al., Biofilm and Helicobacter pylori: from environment to human host. World J Gastroenterol, 2014. 20(19): p. 5632-8.
    23. Hathroubi, S., S. Hu, and K.M. Ottemann, Genetic requirements and transcriptomics of Helicobacter pylori biofilm formation on abiotic and biotic surfaces. NPJ Biofilms Microbiomes, 2020. 6(1): p. 56.
    24. Huang, Y., et al., Adhesion and Invasion of Gastric Mucosa Epithelial Cells by Helicobacter pylori. Front Cell Infect Microbiol, 2016. 6: p. 159.
    25. Bina, J.E., et al., Helicobacter pylori uptake and efflux: basis for intrinsic susceptibility to antibiotics in vitro. Antimicrob Agents Chemother, 2000. 44(2): p. 248-54.
    26. Imkamp, F., et al., Rapid Characterization of Virulence Determinants in Helicobacter pylori Isolated from Non-Atrophic Gastritis Patients by Next-Generation Sequencing. J Clin Med, 2019. 8(7).
    27. Doohan, D., et al., Helicobacter pylori BabA-SabA Key Roles in the Adherence Phase: The Synergic Mechanism for Successful Colonization and Disease Development. Toxins (Basel), 2021. 13(7).
    28. Oleastro, M. and A. Menard, The Role of Helicobacter pylori Outer Membrane Proteins in Adherence and Pathogenesis. Biology (Basel), 2013. 2(3): p. 1110-34.
    29. Marcus, E.A., G. Sachs, and D.R. Scott, Acid-regulated gene expression of Helicobacter pylori: Insight into acid protection and gastric colonization. Helicobacter, 2018. 23(3): p. e12490.
    30. Baj, J., et al., Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells, 2020. 10(1).
    31. Yeh, Y.C., et al., H. pylori CagL-Y58/E59 prime higher integrin alpha5beta1 in adverse pH condition to enhance hypochlorhydria vicious cycle for gastric carcinogenesis. PLoS One, 2013. 8(8): p. e72735.
    32. Chuang, C.H., et al., Helicobacter pylori with stronger intensity of CagA phosphorylation lead to an increased risk of gastric intestinal metaplasia and cancer. BMC Microbiol, 2011. 11: p. 121.
    33. Kwok, T., et al., Helicobacter exploits integrin for type IV secretion and kinase activation. Nature, 2007. 449(7164): p. 862-6.
    34. Blaser, M.J. and D.E. Berg, Helicobacter pylori genetic diversity and risk of human disease. J Clin Invest, 2001. 107(7): p. 767-73.
    35. Sause, W.E., A.R. Castillo, and K.M. Ottemann, The Helicobacter pylori autotransporter ImaA (HP0289) modulates the immune response and contributes to host colonization. Infect Immun, 2012. 80(7): p. 2286-96.
    36. Sause, W.E., et al., The Helicobacter pylori Autotransporter ImaA Tempers the Bacterium's Interaction with alpha5beta1 Integrin. Infect Immun, 2017. 85(1).
    37. Yang, J.C., et al., Genetic analysis of the cytotoxin-associated gene and the vacuolating toxin gene in Helicobacter pylori strains isolated from Taiwanese patients. Am J Gastroenterol, 1997. 92(8): p. 1316-21.
    38. Balcerczak, M., et al., HMGI(Y) gene expression in colorectal cancer: comparison with some histological typing, grading, and clinical staging. Pathol Res Pract, 2003. 199(10): p. 641-6.
    39. Hillion, J., et al., Upregulation of MMP-2 by HMGA1 promotes transformation in undifferentiated, large-cell lung cancer. Mol Cancer Res, 2009. 7(11): p. 1803-12.
    40. Huang, R., et al., Overexpression of HMGA1 correlates with the malignant status and prognosis of breast cancer. Mol Cell Biochem, 2015. 404(1-2): p. 251-7.
    41. Wang, X., et al., Fusion of HMGA1 to the LPP/TPRG1 intergenic region in a lipoma identified by mapping paraffin-embedded tissues. Cancer Genet Cytogenet, 2010. 196(1): p. 64-7.
    42. Williams, M.D., et al., HMGA1 drives metabolic reprogramming of intestinal epithelium during hyperproliferation, polyposis, and colorectal carcinogenesis. J Proteome Res, 2015. 14(3): p. 1420-31.
    43. Xu, G., et al., MiR-142-3p functions as a potential tumor suppressor in human osteosarcoma by targeting HMGA1. Cell Physiol Biochem, 2014. 33(5): p. 1329-39.
    44. Rahman, M.M., et al., Frequent overexpression of HMGA1 and 2 in gastroenteropancreatic neuroendocrine tumours and its relationship to let-7 downregulation. Br J Cancer, 2009. 100(3): p. 501-10.
    45. Chen, S., et al., Structure-function studies of histone H3/H4 tetramer maintenance during transcription by chaperone Spt2. Genes Dev, 2015. 29(12): p. 1326-40.
    46. Ramirez-Moya, J., et al., Identification of an interactome network between lncRNAs and miRNAs in thyroid cancer reveals SPTY2D1-AS1 as a new tumor suppressor. Sci Rep, 2022. 12(1): p. 7706.
    47. Yin, L., et al., The role of histone chaperone spty2d1 in human colorectal cancer. Mol Cell Probes, 2022. 64: p. 101832.

    無法下載圖示 校內:2028-07-29公開
    校外:2028-07-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE