簡易檢索 / 詳目顯示

研究生: 許裕昇
Hsu, Yu-Sheng
論文名稱: 軟磁複合材料應用於新型永磁馬達之設計與實現
Design and Implementation of Novel PM Motors Using Soft Magnetic Composites
指導教授: 蔡明祺
Tsai, Min-Ching
共同指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 100
中文關鍵詞: 軟磁複合材料風扇馬達橫流式馬達裝配後充磁磁路模型
外文關鍵詞: soft magnet composite, fan motor, transverse flux motor, sub-assembly magnetization, magnetic circuit model
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別探討風扇馬達與橫流式馬達(transverse flux motor)之創新設計,並建立電腦輔助設計流程。風扇馬達研究中採用軟磁複合材料,建立新型3-D定子磁路結構,縮小風扇旋翼葉轂,有效地將空氣帶進中心熱源處,進而讓散熱模組的效率提昇。此一創新結構將原傳統風扇馬達定子體積縮小10%,最後實作並以特性量測,驗證設計之正確性。
    在橫流式馬達之創新設計方面,本研究提出軟磁複合材料應用於新型橫流式馬達,轉子部分採用環狀磁石簡化傳統橫流式馬達結構,因此能有效降低製造成本。本研究同時也針對此馬達之3-D磁路結構,提出簡化2-D模型估算馬達主要尺寸,使得設計流程更具效率,並經由模擬與實測比較,簡化2-D模型獲得完整驗證。此外,為了提高功率密度,橫流式馬達需高強度磁石設計,導致橫流式馬達在製程上,因磁石強力磁性造成組裝困難,且容易有鐵粉等雜物吸附,故本研究提出裝配後充磁有效解決上述問題。在裝配後充磁座之設計過程中,以有限元素方式進行磁化特性模擬分析。最後將裝配後充磁方法與前述因製作考量所提出之橫流式馬達,搭配環狀磁石進行模擬分析,其磁化模擬結果獲得驗證。

    This dissertation proposes two innovative designs which are composed of fan motors and a transverse flux motor (TFM). A novel fan motor with a 3-D stator structure using a soft magnetic composite (SMC) is established to reduce the hub size and allow more airflow. The proposed prototype is 10% smaller than the conventional models. Experimental results are given for evaluating the performance and feasibility of the presented design.
    This study presents a novel topology for claw pole TFM with SMC. The use of ring-magnet can greatly simplify the TFM structure and reduce the manufacturing cost. The proposed simplified 2-D field analysis appears to be of acceptable accuracy as validated by both the 3-D finite element analysis and the comparison between the calculated and experimentally measured Back-emf. Furthermore, to increase the power density, TFM may rely on high intensity magnet design. However, the required magnetized magnets may hence cause manufacturing problems during the process of handling and assembling ferrous debris. This study proposes a sub-assembly magnetization approach, which is a magnetization technique for the TFM rotor equipped with multi-pole magnets. Simulation results confirm that the permanent magnet of the TFM can be successfully magnetized.

    Chapter 1 Introduction 1 1.1 Research background 1 1.1.1 Materials 3 1.1.2 3-D flux path and design flexibility 5 1.1.3 Recycling of SMC materials 7 1.1.4 Commercial application examples 8 1.2 Motivation and objectives 12 1.3 Outline of the dissertation 16 Chapter 2 Novel stator design of fan motors 17 2.1 Overview 17 2.2 Torque generation of single-phase brushless DC motor 22 2.3 Magnetic circuit model 25 2.3.1 Tooth flux 28 2.3.2 Stator yoke flux 29 2.3.3 Back-emf and torque 29 2.3.4 Loss in blushless DC motor 30 2.4 Test system configuration 31 2.5 Fan motor design with finite element modeling analysis 34 2.5.1 Finite element analysis 35 Chapter 3 Development of a novel transverse flux wheel motor 41 3.1 Overview 41 3.2 Motor description 47 3.3 Magnetic circuit analysis and geometry design 50 3.4 Back-emf calculation 57 3.5 Simulation results and comparison 58 3.6 Experimental results 60 Chapter 4 Sub-assembly magnetization strategies 65 4.1 Overview 65 4.2 Magnetization 67 4.3 TFM and magnetization device 70 4.4 Fundamental theory of SAM 73 4.5 Simulation results and comparison 77 Chapter 5 Conclusions and future work 84 5.1 Summary 84 5.2 Suggestions for future research 86 References 87 Appendix-A Dimension of investigated fan motors 97

    [1] Y. Enomoto, M. Ito, H. Koharagi, R. Masaki, S. Ohiwa, C. Ishihara, and M. Mita “Evaluation of experimental permanent-magnet brushless motor utilizing new magnetic material for stator core teeth,” IEEE Trans. Magn., vol. 41, no. 11, pp. 4304-4308, Nov. 2005.
    [2] M. A. Khan, N. R. Batane, D. J. Morrison, and P. Pillay, “Prototyping a composite SMC/steel axial-flux PM wind generator,” in Conf. Rec. 41st IEEE IAS Annu. Meeting, Tampa, FL, vol. 5, pp. 2374-2381, Oct. 2006.
    [3]Höganäs AB, http://www.hoganas.com/en/.
    [4] M. R. Dubois, “Optimized permanent magnet generator topologies for direct-drive wind turbines” Ph.D. dissertation, Delft Univ. Technol., Delft, The Netherlands, 2004.
    [5] M. R. Dubois, L. P. Lefebvre, P. Lemieux, and E. Dusablon, “Compaction of SMC powders for high saturation flux density,” in Proc. Int. Conf. Elec. Mach., Cracow, Poland, Sep. 2004.
    [6] H. Shokrollahi and K. Janghorban, “Soft magnetic composite materials (SMCs),” J. Mat. Process. Technol., vol. 189, pp. 1-12, July 2007.
    [7] A. G. Jack, B. C. Mecrow, P. G. Dickinson, D. Stephenson, J. S. Burdess, N. Fawcett and J. T. Evans,“Permanent-magnet machines with powdered iron cores and prepressed windings,” IEEE Trans. Ind. Appl., vol. 36, no.4 , pp.1077-1084, July/Aug. 2000.
    [8] Phase Motion Control S.p.a., http://www.phase.eu/eng/index.html.
    [9] M. Persson, G. Nord, and A. G. Jack, “Soft magnetic composite materials ac properties and their application in electrical machines,” in Proc. Int. Conf. Electr. Mach. Syst., Cheju-Island, Korea, 2004.
    [10] L. O. Hultman and A. G. Jack, “Soft magnetic composites-materials and applications,” in Proc. Int. Electron. Mach. Drives Conf., vol. 1, Madison, Wisconsin, USA, pp. 516-522, June 2003.
    [11] Appliance Design Magazine, http://www.appliancedesign.com/.
    [12] M. Persson, P. Jansson, A. G. Jack, and B. C. Mecrow, “Soft magnetic composite materials - use for electrical machines,” in Proc. Inst. Elect. Eng. Conf Pub., Durham, U.K., pp. 242-246, Apr. 1995.
    [13] G. Cvetkovski, L. Petkovska, M. Cundev and S. Gair, “Improved design of a novel PM disk motor by using soft magnetic composite material,” IEEE Trans. Magn., vol. 38, no. 5, pp. 3165-3167, Sep. 2002.
    [14] G. S. Liew, N. Ertugrul, L. Soong, and D. Gehlert, “Analysis and performance evaluation of an axial-field brushless PM machine utilizing soft magnetic composites,” in Proc. IEEE Int. Electr. Mach. Drives, vol. 1, Antalya, Turkey, pp. 153-158, May 2007.
    [15] A. G. Jack, B. C. Mecrow, C. P. Maddison, and N. A.Wahab, “Claw pole armature permanent magnet machines exploiting soft iron powder metallurgy,” in Proc. IEEE EMDC Conf., Milwaukee, WI, pp. MA1/5.1-MA1/5.3, May 1997.
    [16] Y. Guo, J. Zhu, and D. G. Dorrell, “Design and analysis of a claw pole permanent magnet motor with molded soft magnetic composite core,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4582-4585, Oct. 2009.
    [17] J. Cros and P. Viarouge, “New structures of polyphase claw-pole machines,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 113-120, Jan./Feb. 2004.
    [18] B. C. Mecrow, A. G. Jack, and C. P. Maddison, “Permanent magnet machines for high torque, low speed applications,” in Proc. Int. Conf. Elec. Mach., Vigo, Spain, pp. 461-466, 1996.
    [19] Y. G. Guo, J. G. Zhu, P. A. Watterson, and W. Wu, “Development of a permanent magnet transverse flux motor with soft magnetic composite core,” IEEE Trans. Energy Convers., vol. 21, no. 2, pp. 426-434, June 2006.
    [20] A. G. Jack, B. C. Mecrow, and C. P. Maddison, “Combined radial and axial permanent magnet motors using soft magnetic composites,” in Proc. IEEE Int. Electr. Mach. Drives, pp. 25-29, Sep. 1999.
    [21] J. Cros, P. Viarouge, and A. Halila, “Brush DC motors with concentrated windings and soft magnetic composites armatures,” in Conf. Rec. IEEE-IAS Annu. Meeting, Chicago, IL, Oct. 2001.
    [22] A. G. Jack, B. C. Mecrow, P. Dickinson, P. Jansson, and L. Hultman, “Design and testing of a universal motor using a soft magnetic composite stator,” in Proc. IEEE-IAS, Rome, Italy, pp. 46-50, Oct. 2000.
    [23] J. Cros, P. Viarouge, Y. Chalifour, and J. Figueroa, “A new structure of universal motor using soft magnetic composites,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 550-557, Mar./Apr. 2004.
    [24] T. Fukuda and M. Morimoto, “Load characteristics of induction motor made of Soft Magnetic Composite (SMC)”, in Proc. 2008 Int. Conf. on Electrical Machines and Sys., Wuhan, China, pp. 53-56, Oct. 2008.
    [25] K. Vijayakumar, R. Karthikeyan, G.K. Sathishkumar, and R. Arumugam, “Two dimensional magnetic and thermal analysis of high speed switched reluctance motor using soft magnetic composite material,” in Proc. TENCON - IEEE Region 10 Conf., Hyderabad, India, pp. 1-5, Nov. 2008.
    [26] J. Y. Lee, J. H. Chang, D. H. Kang, S. I. Kim, and J. P. Hong, “Tooth shape optimization for cogging torque reduction of transverse flux rotary motor using design of experiment and response surface methodology,” IEEE Trans. Magn., vol. 43, no. 4, pp. 1817-1820, Apr. 2007.
    [27] M. C. Tsai, M. H. Weng, and M. F. Hsieh, “Computer-aided design and analysis of a novel fan motor,” IEEE Trans. Magn., vol. 38, no. 5, pp. 3467-3474, Sep. 2002.
    [28] J. Hur, H. G. Sung, B. K. Lee, C. Y. Won, and B. H. Lee, “Development of high-efficiency 42V cooling fan motor for hybrid electric vehicle applications,” in Proc. IEEE. Veh. Power and Propulsion Conf. (VPPC), pp. 1-6, Sep. 2006.
    [29] W. Ouyang, S. Huang, A. Good, and T. A. Lipo, “Modular permanent magnet machine based on soft magnetic composite,” in Proc. Int. Conf. Electr. Mach. Syst., vol. 1, Nanjing, China, pp. 235-239, Sep. 2005.
    [30] Y. Guo, J. Zhu, and H. Lu, “Design of SMC motors using hybrid optimization techniques and 3D FEA with increasing accuracy,” in Proc. Int. Conf. Electr. Mach. Syst., vol. 3, Nanjing, China, pp. 2296-2301, Sep. 2005.
    [31] E. Santander, A. B. Ahmed, and M. Gabsi, “Prediction and measurement of detent torque of a single-phase machine,” in Proc. Int. Electron. Mach. Drives Conf., pp. 210-214, 1997.
    [32] T. Kenjo and S. Nagamori, Permanent-Magnet and Brushless DC Motors. Oxford, U.K.: Oxford Univ. Press, 1985.
    [33] C. C. Huang and M. C. Tsai, “Novel two-phase spindle motor for digital video disk applications,” IEEE Trans. Magn., vol. 37, no. 5, pp. 3825-3830, Sep. 2001.
    [34] S. Bentouati, Z. Q. Zhu, and D. Howe, “Influence of design parameters on the starting torque of a single-phase PM brushless DC motor,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3533-3536, Sep. 2000.
    [35] Z. Q. Zhu, S. Bentouati, and D. Howe, “Control of single-phase permanent magnet brushless dc drives for high-speed applications,” in 8th Int. IEE Conf. Power Electronics and Variable Speed Drives, vol. 47, pp. 327-332, 2000.
    [36] A. Hamler and B. Hribernik, “Impact of shape of stator pole of one phase brushless motor on cogging torque,” IEEE Trans. Magn., vol. 32, no. 3, pp. 1545-1548, May 1996.
    [37] M. Rizzo, A. Savini, and J. Turowski, “Influence of number of poles on the torque of DC brushless motors with auxiliary salient poles,” IEEE Trans. Magn., vol. 27, no. 6, pp. 5420-5422, Nov. 1991.
    [38] W. Jin, W. Wang, L. Wu, Z. Wu, J. Ying, and O. Yuan, “Novel single-phase BLDCM topology for low profile fan motor,” in Proc. Int. Conf. Electr. Mach. Syst., Nanjing, China, vol. 1, pp. 489-492, Sep. 2005.
    [39] C. T. Liu and T. S. Chiang, “Three-dimensional force analyses of an axial-flow radial-flux permanent magnet motor with magnetic suspension,” in Conf. Rec. IAS Annu. Meeting, Seattle, WA, pp. 1691–1695, Oct. 2004.
    [40] E. A. Mendrela and M. Jagieta, “Analysis of torque developed in axial flux single-phase brushless DC motor with salient-pole stator,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 271-277, June 2004.
    [41] D. Hanselman, Brushless Permanent Magnet Motor Design, 2nd ed. New York: McGraw-Hill, 2003.
    [42] J. R. Hendershot Jr. and T. J. E. Miller, Design of Brushless Permanent Magnet Motors. Oxford, U.K.: Clarendon, 1994.
    [43] A. Lange, W. R. Canders, F. Laube, and H. Mosebach, “Comparison of different drive systems for a 75 kW electrical vehicle drive,” in Proc. Int. Conf. Elec. Mach., Espoo, Finland, vol. 3, pp. 1308-1312, Aug. 2000.
    [44] H. Weh and H. May, “Achievable force densities for permanent magnet excited machines in new configurations,” in Proc. Int. Conf. Electr. Mach., Munchen, Germany, pp. 1107-1111, 1986.
    [45] H. Weh, H. Hoffmann, and J. Landrath, “New permanent magnet excited synchronous machine with high efficiency at low speed,” in Proc. Int. Conf. Electr. Machines, Pisa, Italy, pp. 35-40, Sep. 1988.
    [46] H. Weh, “Transverse flux (TF) machines in drive and generator application,” in Proc. IEEE/KTH Stockholm Power Tech. Symp., Stockholm, Sweden, pp. 75-80, 1995.
    [47] A. Masmoudi and A. Elantably, “The sizing of TFPM machines for bus and truck hybrid vehicle applications,” in Proc. 16th Electric Veh. Symp., Beijing, China, 1999.
    [48] A. J. Mitcham and T. W. Bolton, “The transverse flux motor: A new approach to naval propulsion,” in Proc. Symp. Motor Technol. Underwater Naval Sea Appl., Rhode Island, pp. 73-80, 1997.
    [49] J. F. Gieras and M. Wing, Permanent Magnet Motor Technology: Design and Applications, 2nd ed. New York: Marcel Dekker, 2002.
    [50] M. R. Harris, G. H. Pajooman, and S. M. A. Sharkh, “Performance and design optimization of electric motors with heteropolar surface magnets and homopolar windings,” in Proc. Inst. Elect. Eng. Elect. Power Applicat., vol. 143, no. 6, pp. 429-436, 1996.
    [51] G. Kastinger, “Design of a novel transverse flux machine,” in Proc. Int. Conf. Electr. Mach., Bruges, Belgium, 2002.
    [52] R. Blissenbach, G. Henneberger, U. Schafer, and W. Hackmann, “Development of transverse flux traction motor in a direct drive system,” in Proc. Int. Conf. Electrical Machines, vol. 3, Espoo, Finland, pp. 1457-1460, 2000.
    [53] Y. G. Guo, J. G. Zhu, P. A.Watterson, and W.Wu, “Comparative study of 3-D flux electrical machines with soft magnetic composite core,” IEEE Trans. Ind. Appl., vol. 39, no. 6, pp. 1696-1703, Nov./Dec. 2003.
    [54] R. Prieto, J. A. Cobos, O. Garcia, P. Alou, and J. Uceda, “Study of 3-D magnetic components by means of “Double 2-D” methodology,” IEEE Trans. Ind. Electron., vol. 50, no. 1, pp. 183-192, Feb. 2003.
    [55] S. H. Mao and M. C. Tsai, “A novel switched reluctance motor with c-core stators,” IEEE Trans. Magn., vol. 41, no. 12, pp. 4413-4420, Dec. 2005.
    [56] M. F. Hsieh, Y. C. Lai, A. Horng, and M. C. Tsai, “An efficient approach for cogging torque analysis of motors with three-dimensional flux distribution,” IEEE Trans. Magn., vol. 42, pp. 3464-3466, 2006.
    [57] A. Njeh, A. Masmoudi and A. Elantably, “3D FEA based investigation of the cogging torque of a claw pole transverse flux permanent magnet machine”, in Proc. Int. Electron. Mach. Drives Conf., vol. 1, Madison, Wisconsin, USA, pp. 319-324, June 2003.
    [58] A. Parviainen, M. Niemelä, and J. Pyrhönen, “Modeling of axial flux permanent-magnet machines,” IEEE Trans. Ind. Appl., vol. 40, no. 5, pp. 1333-1340, Sep./Oct. 2004.
    [59] M. Topor, Y. Chun, D. Koo, P. Han, and B. Woo, “Application of flux reversal principle for axial flux permanent magnet machines,” J. Appl. Phys., vol. 103, no. 7, pp. 07F127:1-07F127:3, Apr. 2008.
    [60] Jung Shing Wire, http://www.jswire.com.tw/TW/Default.aspx.
    [61] H. Murakami, H. Kataoka, Y. Honda, S. Morimoto, and Y. Takeda, “Highly efficient brushless motor design for an air-conditioner of the next generation 42 V vehicle,” in Conf. Rec. IEEE IAS Annu. Meeting, vol. 1, Chicago, IL, pp. 461-466, Oct. 2001.
    [62] J. H. Choi, Y. D. Chun, P. W. Han, M. J. Kim, D. H. Koo, J. Lee, and J. S Chun, “Design of high power permanent magnet motor with segment rectangular copper wire and closed slot opening on electric vehicle,” IEEE Trans. Magn., vol. 46, no. 9, pp. 3701-3704, Sep. 2010.
    [63] G. W. Jewell and D. Howe, “Computer-aided design of magnetizing fixtures for the post-assembly magnetization of rare-earth permanent magnet brushless DC motors,” IEEE Trans. Magn., vol. 28, no. 5, pp. 3036-3038, Sep. 1992.
    [64] P. Zheng, Y. Liu, Y. Wang, and S. Cheng, “Magnetization analysis of the brushless DC motor used for hybrid electric vehicle,” IEEE Trans. Magn., vol. 41, no. 1, pp. 522-524, Jan. 2005.
    [65] C. K. Lee and B. I. Kwon, “Design of post-assembly magnetization system of line start permanent-magnet motors using FEM,” IEEE Trans. Magn., vol. 41, no. 5, pp. 1928-1931, May 2005.
    [66] Y. Okada, H. Inoue, H. Fusayasu, and H. Nishida, “Analysis for permanent magnet motor taking account of magnetizing process,” IEEE Trans. Magn., vol. 33, no. 2, pp. 2113-2116, Mar. 1997.
    [67] Y. Zhilichev, P. Campbell, and D. Miller, “In situ magnetization of isotropic permanent magnets,” IEEE Trans. Magn., vol. 38, no. 5, pp. 2988-2990, Sep. 2002.
    [68] M. F. Hsieh and Y. C. Hsu, “Characteristics regulation for manufacture of permanent-magnetmotors using post-assemblymagnetization,” IEEE Trans. Magn., vol. 43, no. 6, pp. 2510-2512, June 2007.
    [69] M. F. Hsieh, Y. C. Hsu, and D. G. Dorrell, “Design of large power surface-mounted permanent-magnet motors using post-assembly magnetization,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3376-3384, Oct. 2010.
    [70] C. K. Lee and B. Kwon, “Study in the post-assembly magnetization method of permanent magnet motors," Int. J. Appl. Elec. vol. 20, pp. 125-131, Feb. 2005.
    [71] S. H. Won, W. H. Kim, and J. Lee, “Effect of the incomplete magnetization of permanent magnet in the characteristics of BLDC motor,” IEEE Trans. Magn., vol. 45, no. 6, pp. 2847-2850, June 2009.
    [72] C. J. Lee and G. H. Jang, “Development of a new magnetization fixture for the permanent magnet brushless DC motor to reduce the cogging torque,” IEEE Trans. Magn., vol. 47, no. 10, pp. 2410-2413, Oct. 2011.
    [73] L. Chang, T. R. Eastham, and G. E. Dawson, “In situ magnetization of NdFeBmagnets for permanent magnet machines,” IEEE Trans. Magn., vol. 27, no. 5, pp. 4355-4359, Sep. 1991.
    [74] G. W. Jewell and D. Howe, “Impulse magnetization strategies for an external rotor brushless DC motor equipped with a multipole NdFeB magnet,” in IEE Colloq. Permanent Magnet Mach. Drives, pp. 6/1-6/4, Feb. 1993.
    [75] E. P. Furlani, Permanent Magnet and Electomechanical Devices. New York: Academic, 2001.
    [76] Magnet-Physik Dr. Steingroever GmbH, http://www.magnet-physik.de/.
    [77] A. Masmoudi and A. Njeh and A Elantably, “On the analysis and reduction of the cogging torque of a claw pole transverse flux permanent magnet machine,” Euro. Trans. Electr. Power, vol. 15, pp. 513-526, 2005.
    [78] P. Campbell, Permanent Magnet Materials and their Application. Cambridge, U.K.: Cambridge Univ. Press, 1994.
    [79] J. K. Lee, “The analysis of a magnetizing fixture for a multipole Nd-Fe-B magnet,” IEEE Trans. Magn., vol. 24, no. 5, pp. 2166-2171, Sep. 1988.
    [80] V. V. Batygin and I. N. Toptygin, Problems in Elecrrodynamics, 2nd ed. London, UK: Academic Press, pp. 287-289, 1978.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE