簡易檢索 / 詳目顯示

研究生: 崔凱翔
Tsui, Kai-Hsiang
論文名稱: 磁性奈米柱在聚合物中的排列研究
Organization of Magnetic Nanorods in a Polymer Matrix
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 102
中文關鍵詞: 均聚物奈米柱磁性排列
外文關鍵詞: homopolymer, nanorods, magnetic, organization
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以trioctylphosphine oxide (TOPO)和trioctylphosphine (TOP)作為界面活性劑,Fe(CO)5為前驅物,以熱裂解法合成Fe2P奈米柱,此奈米柱再與均聚物poly(2 vinylpyridine) (P2VP)混合形成複合材料。藉由觀察Fe2P奈米柱/P2VP複合物的形態,可了解奈米柱在不同分子量的聚合物中的行為。奈米柱/P2VP複合物分別製備成薄膜與塊材,最後以穿透式電子顯微鏡觀察奈米粒子在聚合物中的分佈行為。
    在奈米柱的合成研究中,我們藉由調整反應時間來控制粒子之尺寸,由研究結果顯示,奈米柱粒子之長度會隨反應時間增加而變長,長度分佈則隨著反應時間增加而變大,而粒子之寬度受反應時間影響較小。
    由複合材料的研究結果可知,粒子添加量多時,奈米柱會以反向平行排列成具規則性的筏狀(raft-like)結構之聚集團,而其聚集團形態會受到奈米柱長度、粒子添加量、P2VP分子量和複合材料形式的影響。在薄膜複合材料中,奈米柱呈現較好的結構性和一致性,長度為17nm之奈米柱在高粒子添加量下呈網狀結構,在低粒子添加量下可分散於P2VP中;長度為39nm之奈米柱,在不同分子量下呈現不同的排列行為,而其聚集尺寸則隨粒子添加量降低而減小。在塊材中,奈米柱受entanglement現象的影響,可分為MP2VP > Me和MP2VP < Me兩部分,其中Me為P2VP的entanglement分子量,當MP2VP > Me時,高分子會形成糾結團,這些糾結團會區隔粒子,導致粒子在各個區塊各別聚集;而隨粒子添加量增加,其聚集團由球形小聚集團發展成長條狀聚集團,排列方式由散亂排列轉變成筏狀結構,而在更高的粒子添加量下和更高的P2VP分子量,會因為熵效應和磁性,而導致奈米柱形成不規則狀聚集;當MP2VP < Me時,高分子不形成糾結團,粒子可在高分子中自由移動,因磁性作用而產生嚴重的聚集。

    Fe2P nanorods were prepared by thermolysis using trioctylphosphine oxide (TOPO) and trioctylphosphine (TOP) as surfactants, and Fe(CO)5 as a precursor. The nanorods and poly(2 vinylpyridine) (P2VP) were mixed to prepare nanocomposite. The behavior of nanorods in P2VP with different molecular weights was studied by the analysis of the structure of Fe2P/P2VP composites. The composites were prepared in both thin film and bulk architecture and were characterized by transmission electron microscopy.
    In the synthesis of Fe2P nanorods, the length of nanorods can be manipulated by the reaction time. It was obtained that both the length and the distributation of nanorods increase with increasing reaction time. In constast, the width of nanorods does not show significant charge with time.
    In composite, nanorods tend to organize into a raft-like cluster with anti-parallel particle pairs at high particle loading. Additionally, the length of rod, particle loading, molecular weight of P2VP, and the sample geometry affect the structure of clusters
    In thin film, nanorods organize into a defined structure. Composite with the length of rod of 17nm forms a network structure at high particle loading and exhibits good dispersion at low particle loading. When nanorods with the length of 39nm were mixed with P2VP, they showed different arrangement in different molecular weight of P2VP, but the clusters have similar behavior of aggregation at different particle loading. As the particle content increases, the size of clusters increases.
    In bulk composite, the entanglement of polymer plays an important role on the arrangement of nanorods. The behavior can divided into two regimes, including MP2VP > Me and MP2VP < M¬e, where Me is the entanglement molecular weight. Under the condition of MP2VP > Me¬, polymer forms entanglement that prevents from the occurenee of large rod aggregation. As the particle content increases, the nanorods change from small sphere-like aggregates to long aggregates, and the arrangement of nanorods transfers from a random structure to a raft-like structure. At high particle loading and high molecular weight of P2VP the entropy of P2VP and the magnetization of nanorods cause the organization of nanorods to irregular aggregates. As MP2VP < M¬e, the polymer does not form entanglement, and the nanorods can move freely in polymer. However, huge aggregation occurs due to the magneti force of nanorods.

    中文摘要 I Abstract II 誌謝 IV 總目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 奈米材料與技術 3 2.1.1 奈米材料簡介 3 2.1.2 奈米材料的定義與特性 4 2.1.3 奈米科技的原理 6 2.2 磁性奈米粒子的合成與形狀控制 11 2.2.1 磁性奈米粒子的製備 11 2.2.2 一維奈米粒子的形狀控制 17 2.3 奈米磁性材料 21 2.3.1奈米磁性材料的研究現狀 21 第三章 實驗 41 3.1 藥品 41 3.2 儀器與耗材 42 3.3 實驗方法 43 3.3.1 Fe2P柱狀奈米粒子的合成 43 3.3.2 柱狀奈米粒子與均聚物(P2VP)複合材料的製備 43 3.4 分析儀器 44 第四章 結果與討論 45 4-1 磁性奈米柱Fe2P的合成 45 4-2 均聚物/奈米柱之薄膜複合材料 48 4-2-1長度為17nm之奈米柱在均聚物P2VP中的排列行為 49 4-2-2 長度為39nm之奈米柱在均聚物P2VP中的排列情形 56 4-2-3 不同長度奈米柱在薄膜複合材料中的排列行為 63 4-3 均聚物/奈米柱之塊材 65 4-3-1 長度為17nm之奈米柱在均聚物P2VP中的排列情形 65 4-3-2 長度為39nm之奈米柱在均聚物P2VP中的排列情形 73 4-3-3 不同長度奈米柱在塊材中的排列行為 81 4-3-4 塊材和薄膜複合材料的比較 83 4.4 奈米柱在均聚物中的理論行為 84 結論 96 參考文獻 97

    1. 馬振基,奈米材料科技原理與應用,全華科技圖書股份有限公司,2003
    2. 伊邦躍,奈米時代,五南出版社,2002
    3. 張立德,奈米材料,五南出版社, 2002
    4. A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 1995, 95 (3), 735.
    5. S. Neveu, A. Bee, M. Robineau, D. Talbot, J. Colloid Interface Sci. 2002, 255, 293.
    6. F. Grasset, N. Labhsetwar, D. Li, D. C. Park, N. Saito, H. Haneda, O. Cador, T. Roisenel, S. Mornet, E. Duguet, J. Portier, J. Etourneau, Langmuir 2002, 18, 8209.
    7. S. Sun, H. Zeng, J. Am. Chem. Soc. 2002, 124, 8204.
    8. S. J. Park, S. Kim, S. Lee, Z. Khim, K. Char, T. Hyeon, J. Am. Chem. Soc. 2000, 122, 8581.
    9. V. F. Puntes, K. M. Krishan, A. P. Alivisatos, Science 2001, 291, 2115.
    10. Q. Chen, A. J. Rondinone, B. C. Chakoumakos, Z. J. Zhang, J.Magn. Magn. Mater. 1999, 194, 1.
    11. J. Park, K. An. Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, T. Hyeon, Nat. Mater. 2004, 3, 891.
    12. S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science 2000, 287, 1989.
    13. E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, J. Am. Chem. Soc. 2002, 124, 11480.
    14. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li, J. Am. Chem. Soc. 2004, 126, 273.
    15. F. X. Redl, C. T. Black, G. C. Papaefthymiou, R. L. Sandstrom, M. Yin, H. Zeng, C. B. Murray, S. P. O’Brien, J. Am. Chem. Soc. 2004, 126, 14583.
    16. J. Rockenberger, E. C. Scher, A. P. Alivisatos, J. Am. Chem. Soc. 1999, 121, 11595.
    17. D. Farrell, S. A. Majetich, J. P. Wilcoxon, J. Phys. Chem. B. 2003, 107, 11022.
    18. B. K. Paul, S. P. Moulik, Curr. Sci. 2001, 80, 990.
    19. X. Wang, J. Zhuang, Q. Peng, Y Li, Nature 2005, 437, 121.
    20. H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Angew. Chem. 2005, 117, 2841.
    21. A. H. Lu, E. L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 2007, 46, 1222.
    22. S. J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, T. Hyeon, J. Am. Chem. Soc. 2000, 122,8581.
    23. H. J. Lee, K. Woo, J. Magn. Magn. Mater. 2004, 272, e1155.
    24. J. Park, B. Koo, K. Y. Yoon, Y. Hwang, M. Kang, J. G. Park, T. Hyeon, J. Am. Chem. Soc. 2005, 127, 8433.
    25. S. Peng, C. Wang, J. Xie, S. Sun, J. Am. Chem. SOC. 2006, 128, 10676.
    26. A. T. Kelly, I. Rusakova, T. Ould-Ely, C. Hofmann, A. Lüttge, K. H. Whitmire, Nano. Lett. 2007, 7, 2920.
    27. M. Chen, T. Pica, Y. B. Jiang, P. Li, K. Yano, J. P. Liu, A. K. Datye, H. Fan, J. AM. Chem. Soc. 2007, 129, 6348.
    28. X. Hu, J. C. Yu, Adv. Funct. Mater. 2008, 18, 880.
    29. S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, M. Setogawa, Y. Kurihara, J. Magn. Magn. Mater. 1987, 65, 245.
    30. A.H. Lu, W. Schmidt, N. Matoussevitch, H. Bönnermann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schüth, Chem. Int. Ed. 2004, 116, 4403.
    31. S. C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett, Chem. Int. Ed. 2004, 116, 5763.
    32. A. K. Gupta, M. Gupta, Biomaterials 2005, 26, 3995.
    33. S. Mornet, S. Vasseur, F. Grasset, P. Verveka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Prog Solid State Chem. 2006, 34, 237.
    34. Z. Li, L. Wei, M. Y. Gao, H. Lei, Adv. Mater. 2005, 17, 1001.
    35. T. Hyeon, Chem. Commun. 2003, 927.
    36. D. W. Elliott, W. X. Zhang, Environ. Sci. Technol. 2001, 35, 4922.
    37. M. Takafuji, S. Ide, H. Ihara, Z. Xu, Chem. Mater. 2004, 16, 1977.
    38. Z. Li, L. Cao, C. J. Li, Angew, 2007, 47, 6505.
    39. H. Bönnemann, W. Brijoux, R. Brinkmann, N. Matoussevitch, N.Waldoefner, N. Palina, H. Modrow, Inorg. Chem. Acta. 2003, 350, 617.
    40. C. R. Vestal, Z. J. Zhang, J. Am. Chem. Soc. 2002, 124, 14312.
    41. Y. W. Jun, J. S. Choi, J. Cheon, Angew. Chem. Int. Ed. 2006, 45, 3414.
    42. Y. Geng, P. Dalhaimer, S. S. Cai, R. Tsai, M. Tewari, T. Minko, D. E. Discher, Nat. Nanotechnol. 2007, 2, 249.
    43. D. L. Leslie-Pelecky, R. D. Rieke, Chem. Mater. 1996, 8, 1770.
    44. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, No. 5.
    45. R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89.
    46. X. F. Duan, C. M. Leiber, Adv. Mater. 2000, 12, 298.
    47. G. F. Taylor, Phys. Rev. Lett. 1924, 23, 655.
    48. R. M. Penner, M. J. Heben, T. L. Longin, N. S. Lewis, Science 1990, 250, 1118.
    49. C. Pacholski, A. Kornowski, H.Weller, Angew. Chem. Int. Ed. 2002, 114, 1234.
    50. J. Yu, J. Joo, H. M. Park, S. I. Baik, Y. W. Kim, S. C. Kim, T. Hyeon, J. Am. Chem. Soc. 2005, 127, 5662.
    51. K. S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray, J. Am. Chem. Soc. 2005, 127, 7140.
    52. K. Ahrenstorf, O. Albrecht, H. Heller, A. Kornowski, D. Görlitz, H. Weller, small, 2007, 3, No.2, 271.
    53. Y. Zhang, J. Zhu, X. Song, X. Zhong, J. Phys. Chem. C, 2008, 112, 5322.
    54. T. L. Breen, J. Tien, S. R. Oliver, T. Hadzic, G. M. Whitesides, Science, 1999, 284, 948.
    55. A. M. Cao, J. S. Hu, H. P. Lianng, L. J. Wan, Angew. Chem. Int. Ed. 2005, 44, 4391.
    56. G. Sun, X. Zhang, M. Cao, B. Wei, C. Hu, J. Phys. Chem. C, 2009, 113(17), 6948.
    57. Y. Zhang, Y. Chen, T. Wang, J. Zhou, Y. Zhao, Microporous and Mesoporous Materials, 2008, 114, 257.
    58. A. Satoh, R.W. Chantrell, G.N. Coverdale, J. Colloid Interface Sci. 1999, 209, 44.
    59. S. Melle, O.G. Calderon, G.G. Fuller, M.A. Rubio, J. Colloid Interface Sci. 2002, 247, 200.
    60. A. Satoh, G.N. Coverdale, R.W. Chantrell, J. Colloid Interface Sci. 2000, 231, 238.
    61. A. Satoh, J. Colloid Interface Sci. 2001, 243, 342.
    62. R.W. Chantrell, A. Bradbury, J. Popplewell, S.W. Charles, J. Phys. D, 1980, 13, L119.
    63. R.W. Chantrell, A. Bradbury, J. Popplewell, S.W. Charles, J. Appl. Phys. 1982, 53, 2742.
    64. J.J. Weis, D. Levesque, Phys. Rev. E,1993, 48, 48.
    65. J.J. Weis, D. Levesque, Phys. Rev. Lett. 1993, 71, 2729.
    66. A. Satoh, R.W. Chantrell, S. Kamiyama, G.N. Coverdale, J. Colloid Interface Sci. 1996, 178, 620.
    67. A. Satoh, R.W. Chantrell, S. Kamiyama, G.N. Coverdale, J. Colloid Interface Sci. 1996, 181, 422.
    68. A. Bradbury, S. Menear, R.W. Chantrell, J. Magn. Magn. Mater. 1986, 54, 745.
    69. R.W. Chantrell, G.N. Coverdale, M.E. Hilo, K. O’Grady, J. Magn. Magn. Mater. 1996, 157, 250.
    70. P. Bhatt, R.V. Mehta, S.P. Bhatnagar, R.V. Upadhyay, D. Srinivas, Indian J. Eng. Mater. Sci. 1998, 5, 356.
    71. T. Kruse, A. Spanoudaki, R. Pelster, Phys. Rev. B, 2003, 68, 054208.
    72. T. Kristof, I. Szalai, Phys. Rev. E, 2003, 68, 041109.
    73. M. Aoshima, A. Satoh, J. Colloid Interface Sci. 2004, 280, 83.
    74. M. Aoshima, A. Satoh, J. Colloid Interface Sci. 2006, 293, 77.
    75. C. Xu, K. Ohno, V. ladmiral, R. J. Composto, Polymer, 2008, 49, 3568.
    76. M. K. Corbierre, N. S. Cameron, M. Sutton, K. Laaziri, R. B. Lennox, Langmuir, 2005, 21, 6063.
    77. I. Borukhov, L. Leibler, Macromolecules, 2002, 35, 5171.
    78. V. Sharma, K. Park, M. Srinivasarao, Materials Science and Engineering, 2009, 65, 1-38.
    79. S. L. Shenoy, W. D. Bates, H. L. Frisch, G. E. Wnek, Polymer, 2005, 46, 3372.
    80. C. T. Lo, C. J. Chao, Langmuir, 2009, 25, 12865.
    81. J. Hu, L. Li, W. Yang, L. Manna, L. Wang, A. P. Alivisatos, Science, 2001, 292, 2060.
    82. J. S. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, J. M. J. Frechet, J. Am. Chem. Soc. 2004, 126, 6550.
    83. Q. Y. Tang, Y. Q. Ma, J. Phys. Chem. B, 2009, 113, 10117.
    84. L. He, L. Zhang, A. Xia, H. Liang, J. Chem. Phys. 2009, 130, 144907.
    85. C. S. T. Laicer, T. Q. Chastek, T. P. Lodge, T. A. Taton, Maromolecules, 2005, 38, 9749.
    86. F. Mart´ınez-Pedrero, M. Tirado-Miranda, A. Schmitt, J. Callejas-Fern´andez, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 270, 317.
    87. C. Huang, M. O. Delacruz, B. W. Swift, Macromolecules, 1995, 28, 7996.
    88. L. H. Sperling, Physical Polymer Science 3rd ed, Wiley, 2001.
    89. E. Oktavia, Study of Morphological Develoopement of Diblock copolymer Thin Film under Neutral Solvent annealing, NCKU, 2009.
    90. A. F. M. Barton, CRC handbook of solubility parameters and other cohesion parameters, CRC Press, 1991.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE