簡易檢索 / 詳目顯示

研究生: 蔡銘峰
Tsai, Ming-Feng
論文名稱: 利用元始計算之電場梯度及遮蔽常數以研究鍵結理論及訊息
Studies of bonding theory and information by analyzing electric field Gradients and shielding constants obtained from ab initio calculation
指導教授: 王小萍
Wang, Shao-Pin
蘇世剛
Su, Shyh-Gang
黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 98
中文關鍵詞: 負超共軛遮蔽常數雪梨酮半經驗計算法電場梯度元始計算
外文關鍵詞: ab initio, efg, semiempire calculation, shielding constant, negative hyperconjugation
相關次數: 點閱:117下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在目前的研究,我們提出最適合代表雪梨酮的單一混成結構而且betaine是最適合的構型。而在傳統的離子共價鍵可以由分析元始計所得的電場梯度及遮蔽常數的數值而被排除在外。

      換句話說,在雪梨酮化合物不能歸類為酮類的雪梨酮構造式。而在研究已被採用含取代基的苯的遮蔽常數。從碳-13的化學位移值中所計算的取代基效應接近文獻中的取代基參數,而顯著的被廣泛知道的取代基加成性也由我們計算的結果中被證實。而從計算電場梯度中可以從CFn,H3-n (n=1,2,3) 取代於苯環及乙烯上後的電場梯度值中,由負超共軛現象來解釋。此一結論可從(1)在CF3取代基化合物中其構型對於電場梯度值的影響。(2)在這兩者系列中其氟原子數目的趨勢對於電場梯度值的相對關係。

    In the current research we have proposed that the betaine structure is the most appropriate single hybrid structure for sydnone representative. Whereas the conventional mesoionic concept is ruled out through analysis of values of electric field gradients (EFG) and screen constants, both obtained from ab initio calculation. In other words, the sydnone compounds cannot be classified as ketones.

    Studies of shielding constants for substituted benzenes have also been undertaken. It is found the calculated substitution effect on carbon-13 chemical shifts are in good agreement with the empirical substitution parameters reported in literature. More significantly, the well-known additivity of substitution effect is also evidenced by our calculated results. Negative hyperconjugation can be employed to account for the EFG values calculated for the CFnH3-n substituted benzenes and ethylenes. This conclusion is derived from (1) the effects of conformation on EFGs in CF3 –substituted compounds and (2) the trend of EFGs in both series, which are coorelated with the number of F-atom(n) present in CFnH3-n.

    目錄 中文摘要………………………………………………………Ⅰ 英文摘要………………………………………………………Ⅱ 目錄……………………………………………………………Ⅲ 表目錄…………………………………………………………Ⅳ 圖目錄…………………………………………………………Ⅴ 第一章、緒論…………………………………………………1 第二章、理論背景……………………………………………………..3 2-1、雪梨酮化合物的簡介……………………………………3 2-2、負超共軛…………………………………………………6 2-2-1、負超共軛歷史回顧……………………………………6 2-2-2、以分子軌域觀點來說明負超共軛現…………………8 2-2-3、在不同取代基下的負超共軛與立體結構的分析……11 2-3、電場梯度…………………………………………………11 2-3-1、電場梯度的理論………………………………………12 2-3-2、電埸梯度和核四極偶合常數…………………………13 2-4、元始計算…………………………………………………18 2-4-1、分子軌域模型的簡介………………………………19 2-4-2、基底…………………………………………………22 2-4-3、電場梯度值的計算原理……………………………28 2-4-4、分析方法……………………………………………30 2-4-5、Townes-Dailey理論………………………………33 2-4-6、應用於多鍵分子的核四極偶合常數………………35 2-5、光譜參數研究…………………………………………37 2-5-1、區域的逆磁性遮蔽場,σNdia………………………38 2-5-2、鄰近的異方向遮蔽,σNNB…………………………39 2-5-3、當區間的順磁性σparaN……………………………40 2-5-4、光譜上的參數………………………………………42 2-5-5、造成化學位移的一些現象…………………………43 2-5-6、半經驗加成法則………………………………………52 第三章、結果與討論………………………………………54 3-1、雪梨酮上的共振現象與取代基的關係……………55 3-2、遮蔽常數的分析……………………………………….55 3-2-1、雪梨酮上的化學位移………………………………..56 3-2、取代基上的加成效應…………………………………56 3-2-1、雪梨酮上的化學位移值……………………………56 3-2-2、取代基對於17O對化學位移之影響………………56 3-3、雪梨酮上的電場梯度值………………………………59 3-4、雪梨酮中的電荷流向………………………………….61 3-5、苯環取代基上13C化學位移的加成效應…………….62 3-5-1、電負度效應…………………………………………63 3-5-2、逆磁異向性效應……………………………………..63 3-5-3、雙取代基中化學位移的趨向……………………….64 3-5-4、取代基的效應………………………………………65 3-6-1、電場梯度與負超共軛……………………………….66 3-6-2、雪梨酮的負超共軛…………………………………67 第四章、結論……………………………………………………..…68 圖形…………………………………………………………………….69 表格……………………………………………………………….76 參考文獻………………………………………………………………..93 圖目錄 圖一:雪梨酮所可能產生的共振結構式…………………………………..69 圖二:核與電場梯度的關係……………………………………………….69 圖三:Hartree-Fock模型………………………………………….70 圖四:酮類的雪梨酮結構式………………………………………………70 圖五:非酮類的雪梨酮結構式……………………………………………70 圖六:I1~I10的雪梨酮衍生物………………………………………….71 圖七;酮類雪梨酮氧O(1)和氧O(6)的化學位移………………………….72 圖八:非酮類雪梨酮氧O(1)和氧O(6)的化學位移………………………..72 圖九:雪梨酮的分子內氫鍵型式………………………………………..73 圖十:雪梨酮分子間氫鍵的型式…………………………………………73 圖十一:共振效應對苯環所產生的影響………………………………….74 圖十二:接氟原子的幾何構型……………………………………………75 表目錄 表一:雪梨酮的化學位移實驗值………………………..……………76 表二:非酮類雪梨酮的化學位移計算值………………..…………77 表三:酮類雪梨酮的化學位移計算值……………………………78 表四:雪梨酮上的電荷分布(mulliken)……………..………..79 表五:雪梨酮的電場梯度值比較…………………………………80 表六:取代基的實驗值……………………………………..….……81 表七:取代基的計算值……………………………………....……82 表八:CF3基中的雙取代的化學位移值……………………..……….83 表九:Cl基中的雙取代的化學位移值……………………….……84 表十:COCF3基中的雙取代的化學位移值………………………...………85 表十一:COCH3基中的雙取代的化學位移值………………..…….……86 表十二:F基中的雙取代的化學位移值…………………….….87 表十三:NH2基中的雙取代的化學位移值……………………..88 表十四:NO2基中的雙取代的化學位移值……………………..89 表十五:COH基中的雙取代的化學位移值………………………….90 表十六:CN基中的雙取代的化學位移值………………………….…91 表十七:共振效應對苯環所產生的影響……………………….…….92 表十八:氟的電場梯度值...................................................................94

    1. SP Wang, CN Kuo, S Ma , M-Y Yeh , Spectrosc. Lett. 1993; 26: 431.

    2. For reviews of negative or anionic hyperconjugation, see

    (a) Mulliken RS,J. Chem. Phys.,1955;23:1833, 1841, 2338, 2343.
    (b)Schneider WF, Nance BI, wallington TJ. J.Am.Chem.Soc., 1995; 117: 478
    (c)Salzner U, Schleyer PvR. J. Am Chem. Soc., 1992; 190: 401.
    (d)Reed AE, Schleyer PvR. J. Am Chem. Soc., 1990; 112: 1434.
    (e)Schleyer PvR, Kos AJ. Tetrahedron, 1983; 39:1141.
    (f)Roberts JD, Webb RL, McElhill EA. J. Am. Chem. Soc., 1950; 72: 408.

    3. KH Ho, CC Lin, M-Y Yeh, SP Wang, “NMR and X-Ray Studies of
    3-(p-Tolyl)-4-substitued Sydnone. Electronic Structure Re-examined.” Submitted
    to J. Phys. Org. Chem. (in revised version).

    4. Earl JC, Mackney, AW, J. Chem. Soc., 1935; 899.

    5. Simpson JCE, J. Chem. Soc., 1946; 94.

    6. Baker W, Ollis WD, Q. Rev. Chem. Soc., 1957; 11: 15.

    7. Kartritzky AR. Chem. Ind. 1955; 521.

    8. Thiessen WE, Hope H. J. Am. Chem. Soc. 1969; 89: 5877.

    9. Baker W, Ollis WD, Q. Rev. Chem. Soc., 1957; 11: 15.

    10. (a) Mulliken Rs. J. Chem. Phys. 1933; 1: 492, 1935; 3: 520, 1937; 7: 339.
    (b)Mo Y, Schleyer PvR, Jiao H, Lin Z. Chem. Phys. Lett., 1997; 280: 439.

    11. Blockway LO, J. Phys. Chem., 1937; 41: 185.

    12. R, Radom Hoffmann L, Pople JA, Schleyer PvR, Hehre WJ, Salem L, J. Am. Chem. Soc., 1972; 94: 6221.

    13. Pross A, Radom L, Riggs NV, J. Am. Chem. Soc., 1987; 109: 7362.

    14. (a) Schmp E. and P. J. Bray; P. J. Ed., in “Physical Chemistry An Advance Treatise,” 6th Handerson Ed., McGraw-Hill, New York, 1955.

    (b) T. P Das and E.L. Hahn; “Nuclear Quadrupole Resonance Spectroscopy,” Academic Press: New York, 1958.

    (c)E. A. C Lucken; “Nuclear Quadrupole Coupling Constants,” Academic Press: New York, 1969.

    15.T. M. Ho and T. C. Chang; Int. J. Quantum Chem., 1996; 57, 229.

    16.(a) M. L. Martin, J. J. Delpuech and J. G. Martin; “ Practical NMR Spectrosopy,” Heyden and Sons, Ltd, London, 1980. Chapter 7.

    (b) F. W. Emsley, J. Feeney and L. H. Sutcliffe;” High-Resolution Nuclear Magnetic Resonance Spectroscopy,” Vol. 2, Perganib Press: Oxford, 1965.

    (c) T. C. Farrar and E.D. Berker; “ Pulse and Fourier Transform NMR Introduction to Theory and Methods, “ Academic Press: New York, 1971.

    17. R. S. Drago; “Physical Methods for Chemists,” 2nd Ed., Mexuci, 1992. Chapter 14.

    18. G. D. Watkins and R. A. Pound ; Phys. Rev., 1952; 85, 1062

    19. P. A. Cassabella and P. J. Bray; J. Chem. Phys., 1958; 28, 1182.

    20. L. Guibe; Forschr. Chem.. Forsch., 1972; 30, 77.

    21. J. Sheridan and A.A. Turner; Proc. Chem. Soc., 1960; 21.

    22. R. Verma and K.S. buckton; J. Chem. Phys., 1967; 46,1565.

    23. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople; “ab Initio Molecular Orbital Theory,” Canada, 1986.

    24. R. Verma and K.S. Buckton; J. Chem. Phys., 1967; 46, 1565.
    25. S. Huzinaga; “Gaussian Basis Sets for Molecular Calculations,” Elsevier, New York, 1984.

    26. J. C. Slater; Phys. Rev., 36, 57.

    27. J. P. foster and F. weihold; J. Am. Chem. Rev., 1989; 88, 899.

    28. A. E. Reed, L. A. Curtiss and F. Weinhold; Chem. Rev., 1989; 88, 899`.

    29, R. McWeeny;” Coulson’s Valence,”3rd ed., Oxford University Press: New York, 1979.

    30. A.E. Reed and F. Weinstock and F. Weinhold; J. Chem. Phys., 1985; 83, 1736.

    31. E.H. Chen and T. C. Chang; J. Comp. Chem., 1998; 19, 882.

    32. R. S. Mulliken; J. Chem. Phys., 1955; 23, 1833, 1841, 2338, 2343.

    33.陳邇浩; 國立成功大學論文. 1988.

    34. C. H. Townes and S. P. Dailey; J. Chem. Phys., 1948; 17, 782.

    35.(a) R. M. Sternheimer; Phys. Rev., 1951; 84, 244.
    (b) R. M. Sternheimer; Phys. Rev., 1952; 86, 316.

    36. S. P. Wang, M. G. Richmond and M. Schwartz; Inorg. Chem. Soc., 1990; 29, 484.

    37. S. P. Wang, M. G. Richmond and M. Schwartz; J. Am. Chem. Soc., 1992; 114, 7595.

    38. K. S. Wang, D. Wang, K. Yang, M. G. Richmond and M. Schwartz; Inorg. Chem., 1995; 34, 3241.

    39. C. H. Townes and S. P. Dailey; J. Chem. Phys., 1948; 17, 782.

    40. B. Rees and A. Mitschler, J. AM. Chem. Soc., 1876; 98, 7918.

    41. (a)A. Saika and C. P. Slichter, J. Chem. Phys. 1954; 22, 26.
    (b)F. W. Wehrli, A. P. Marchand and S. Wehrli, “Interpretation of Carbon-13 NMR
    Spectra,” 2nd Ed., Wiley, New York, 1989.

    42. W. E. Lamb, Phys. Rev. 1941; 60, 817.

    43. E. Breitmaier and W.Voelter, 13CNMR Spectroscopy, 2nd edn, Verlag Chemie, New York, 1978; 104.

    44. H. M. McConnell, J. Chem. Phys. 1957; 26, 226.

    45. J. A. Pople, Proc. Roy. Soc. 1971; A1, 1038.

    46. M. Karplus and J. A. Pople, J. Chem. Phys. 1963; 38, 2803.

    47. C. Collier and G. A. Webb, Org. Magn. Res. 1979; 12, 659.

    48. D. M. Grant and B. V. Cheney, J. Am. Chem. Soc. 1972; 94, 5318.

    49. J. G. Batchelor, J. H. Prestgard, R. J. Cushley, and S. R. Lipsky, J. Am. Chem. Soc. 1973; 95, 6358.

    50. J. G. Batchelor, J. Am. Chem. Soc. 1975; 97, 3410.

    51.J. G. Batchelor, J. Feeney, and G. C. K. Roberts, J. Magn. Res. 1975; 20, 19.

    52. E. L. Eliel, W. Freitag. J. Am. Chem. Soc. 1977; 99, 8363.

    53. A. R. Kartritzky and R. D. Topsom, J. Chem. Educ. 1971; 48. 427.

    54. W. F. Reynolds. I. R. Peat, M. H. Freedamn, and J. R. Lyerla, Con. J. Che,. 1973;51, 1857.

    55. E. M. Schulman, K. A. Christensen, D. M. Grant, and C. Walling, J. Org. Chem. 1974; 39, 2686.

    56. R. H. Levin and J. D. Roberts, Tetrahedron Lett. 1973; 135.

    57. J. Mason, J. Chem. Soc. 1971;A1, 1038.

    58. T. Pehk and E. Lippmaa, Org. Magn. Res 1971; 3, 679.

    59. E. L. Eliel, W. F. Bailey, L. D. Kopp, R. L. Willer, D. M. Grant, R. Bertrand, K. A. Chrietensen, D. K. Dalling, M.W. Duch, E. Wenkert, F. M. Schell, and D. W. Cochran, J. Am. Chem. Soc. 1975; 97, 322.

    60.E. L. Eliel and K. M. Pietrusiewicz, 13C NMR of nonaromatic heterocyclic compound. In Topics in 13C NMR(Ed. G. C. Lecy), vol 3, chap. 3, Wiley-Interscience, New York, 1979.

    下載圖示 校內:立即公開
    校外:2002-06-25公開
    QR CODE