| 研究生: |
蔡銘峰 Tsai, Ming-Feng |
|---|---|
| 論文名稱: |
利用元始計算之電場梯度及遮蔽常數以研究鍵結理論及訊息 Studies of bonding theory and information by analyzing electric field Gradients and shielding constants obtained from ab initio calculation |
| 指導教授: |
王小萍
Wang, Shao-Pin 蘇世剛 Su, Shyh-Gang 黃守仁 Whang, Thou-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 負超共軛 、遮蔽常數 、雪梨酮 、半經驗計算法 、電場梯度 、元始計算 |
| 外文關鍵詞: | ab initio, efg, semiempire calculation, shielding constant, negative hyperconjugation |
| 相關次數: | 點閱:117 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在目前的研究,我們提出最適合代表雪梨酮的單一混成結構而且betaine是最適合的構型。而在傳統的離子共價鍵可以由分析元始計所得的電場梯度及遮蔽常數的數值而被排除在外。
換句話說,在雪梨酮化合物不能歸類為酮類的雪梨酮構造式。而在研究已被採用含取代基的苯的遮蔽常數。從碳-13的化學位移值中所計算的取代基效應接近文獻中的取代基參數,而顯著的被廣泛知道的取代基加成性也由我們計算的結果中被證實。而從計算電場梯度中可以從CFn,H3-n (n=1,2,3) 取代於苯環及乙烯上後的電場梯度值中,由負超共軛現象來解釋。此一結論可從(1)在CF3取代基化合物中其構型對於電場梯度值的影響。(2)在這兩者系列中其氟原子數目的趨勢對於電場梯度值的相對關係。
In the current research we have proposed that the betaine structure is the most appropriate single hybrid structure for sydnone representative. Whereas the conventional mesoionic concept is ruled out through analysis of values of electric field gradients (EFG) and screen constants, both obtained from ab initio calculation. In other words, the sydnone compounds cannot be classified as ketones.
Studies of shielding constants for substituted benzenes have also been undertaken. It is found the calculated substitution effect on carbon-13 chemical shifts are in good agreement with the empirical substitution parameters reported in literature. More significantly, the well-known additivity of substitution effect is also evidenced by our calculated results. Negative hyperconjugation can be employed to account for the EFG values calculated for the CFnH3-n substituted benzenes and ethylenes. This conclusion is derived from (1) the effects of conformation on EFGs in CF3 –substituted compounds and (2) the trend of EFGs in both series, which are coorelated with the number of F-atom(n) present in CFnH3-n.
1. SP Wang, CN Kuo, S Ma , M-Y Yeh , Spectrosc. Lett. 1993; 26: 431.
2. For reviews of negative or anionic hyperconjugation, see
(a) Mulliken RS,J. Chem. Phys.,1955;23:1833, 1841, 2338, 2343.
(b)Schneider WF, Nance BI, wallington TJ. J.Am.Chem.Soc., 1995; 117: 478
(c)Salzner U, Schleyer PvR. J. Am Chem. Soc., 1992; 190: 401.
(d)Reed AE, Schleyer PvR. J. Am Chem. Soc., 1990; 112: 1434.
(e)Schleyer PvR, Kos AJ. Tetrahedron, 1983; 39:1141.
(f)Roberts JD, Webb RL, McElhill EA. J. Am. Chem. Soc., 1950; 72: 408.
3. KH Ho, CC Lin, M-Y Yeh, SP Wang, “NMR and X-Ray Studies of
3-(p-Tolyl)-4-substitued Sydnone. Electronic Structure Re-examined.” Submitted
to J. Phys. Org. Chem. (in revised version).
4. Earl JC, Mackney, AW, J. Chem. Soc., 1935; 899.
5. Simpson JCE, J. Chem. Soc., 1946; 94.
6. Baker W, Ollis WD, Q. Rev. Chem. Soc., 1957; 11: 15.
7. Kartritzky AR. Chem. Ind. 1955; 521.
8. Thiessen WE, Hope H. J. Am. Chem. Soc. 1969; 89: 5877.
9. Baker W, Ollis WD, Q. Rev. Chem. Soc., 1957; 11: 15.
10. (a) Mulliken Rs. J. Chem. Phys. 1933; 1: 492, 1935; 3: 520, 1937; 7: 339.
(b)Mo Y, Schleyer PvR, Jiao H, Lin Z. Chem. Phys. Lett., 1997; 280: 439.
11. Blockway LO, J. Phys. Chem., 1937; 41: 185.
12. R, Radom Hoffmann L, Pople JA, Schleyer PvR, Hehre WJ, Salem L, J. Am. Chem. Soc., 1972; 94: 6221.
13. Pross A, Radom L, Riggs NV, J. Am. Chem. Soc., 1987; 109: 7362.
14. (a) Schmp E. and P. J. Bray; P. J. Ed., in “Physical Chemistry An Advance Treatise,” 6th Handerson Ed., McGraw-Hill, New York, 1955.
(b) T. P Das and E.L. Hahn; “Nuclear Quadrupole Resonance Spectroscopy,” Academic Press: New York, 1958.
(c)E. A. C Lucken; “Nuclear Quadrupole Coupling Constants,” Academic Press: New York, 1969.
15.T. M. Ho and T. C. Chang; Int. J. Quantum Chem., 1996; 57, 229.
16.(a) M. L. Martin, J. J. Delpuech and J. G. Martin; “ Practical NMR Spectrosopy,” Heyden and Sons, Ltd, London, 1980. Chapter 7.
(b) F. W. Emsley, J. Feeney and L. H. Sutcliffe;” High-Resolution Nuclear Magnetic Resonance Spectroscopy,” Vol. 2, Perganib Press: Oxford, 1965.
(c) T. C. Farrar and E.D. Berker; “ Pulse and Fourier Transform NMR Introduction to Theory and Methods, “ Academic Press: New York, 1971.
17. R. S. Drago; “Physical Methods for Chemists,” 2nd Ed., Mexuci, 1992. Chapter 14.
18. G. D. Watkins and R. A. Pound ; Phys. Rev., 1952; 85, 1062
19. P. A. Cassabella and P. J. Bray; J. Chem. Phys., 1958; 28, 1182.
20. L. Guibe; Forschr. Chem.. Forsch., 1972; 30, 77.
21. J. Sheridan and A.A. Turner; Proc. Chem. Soc., 1960; 21.
22. R. Verma and K.S. buckton; J. Chem. Phys., 1967; 46,1565.
23. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople; “ab Initio Molecular Orbital Theory,” Canada, 1986.
24. R. Verma and K.S. Buckton; J. Chem. Phys., 1967; 46, 1565.
25. S. Huzinaga; “Gaussian Basis Sets for Molecular Calculations,” Elsevier, New York, 1984.
26. J. C. Slater; Phys. Rev., 36, 57.
27. J. P. foster and F. weihold; J. Am. Chem. Rev., 1989; 88, 899.
28. A. E. Reed, L. A. Curtiss and F. Weinhold; Chem. Rev., 1989; 88, 899`.
29, R. McWeeny;” Coulson’s Valence,”3rd ed., Oxford University Press: New York, 1979.
30. A.E. Reed and F. Weinstock and F. Weinhold; J. Chem. Phys., 1985; 83, 1736.
31. E.H. Chen and T. C. Chang; J. Comp. Chem., 1998; 19, 882.
32. R. S. Mulliken; J. Chem. Phys., 1955; 23, 1833, 1841, 2338, 2343.
33.陳邇浩; 國立成功大學論文. 1988.
34. C. H. Townes and S. P. Dailey; J. Chem. Phys., 1948; 17, 782.
35.(a) R. M. Sternheimer; Phys. Rev., 1951; 84, 244.
(b) R. M. Sternheimer; Phys. Rev., 1952; 86, 316.
36. S. P. Wang, M. G. Richmond and M. Schwartz; Inorg. Chem. Soc., 1990; 29, 484.
37. S. P. Wang, M. G. Richmond and M. Schwartz; J. Am. Chem. Soc., 1992; 114, 7595.
38. K. S. Wang, D. Wang, K. Yang, M. G. Richmond and M. Schwartz; Inorg. Chem., 1995; 34, 3241.
39. C. H. Townes and S. P. Dailey; J. Chem. Phys., 1948; 17, 782.
40. B. Rees and A. Mitschler, J. AM. Chem. Soc., 1876; 98, 7918.
41. (a)A. Saika and C. P. Slichter, J. Chem. Phys. 1954; 22, 26.
(b)F. W. Wehrli, A. P. Marchand and S. Wehrli, “Interpretation of Carbon-13 NMR
Spectra,” 2nd Ed., Wiley, New York, 1989.
42. W. E. Lamb, Phys. Rev. 1941; 60, 817.
43. E. Breitmaier and W.Voelter, 13CNMR Spectroscopy, 2nd edn, Verlag Chemie, New York, 1978; 104.
44. H. M. McConnell, J. Chem. Phys. 1957; 26, 226.
45. J. A. Pople, Proc. Roy. Soc. 1971; A1, 1038.
46. M. Karplus and J. A. Pople, J. Chem. Phys. 1963; 38, 2803.
47. C. Collier and G. A. Webb, Org. Magn. Res. 1979; 12, 659.
48. D. M. Grant and B. V. Cheney, J. Am. Chem. Soc. 1972; 94, 5318.
49. J. G. Batchelor, J. H. Prestgard, R. J. Cushley, and S. R. Lipsky, J. Am. Chem. Soc. 1973; 95, 6358.
50. J. G. Batchelor, J. Am. Chem. Soc. 1975; 97, 3410.
51.J. G. Batchelor, J. Feeney, and G. C. K. Roberts, J. Magn. Res. 1975; 20, 19.
52. E. L. Eliel, W. Freitag. J. Am. Chem. Soc. 1977; 99, 8363.
53. A. R. Kartritzky and R. D. Topsom, J. Chem. Educ. 1971; 48. 427.
54. W. F. Reynolds. I. R. Peat, M. H. Freedamn, and J. R. Lyerla, Con. J. Che,. 1973;51, 1857.
55. E. M. Schulman, K. A. Christensen, D. M. Grant, and C. Walling, J. Org. Chem. 1974; 39, 2686.
56. R. H. Levin and J. D. Roberts, Tetrahedron Lett. 1973; 135.
57. J. Mason, J. Chem. Soc. 1971;A1, 1038.
58. T. Pehk and E. Lippmaa, Org. Magn. Res 1971; 3, 679.
59. E. L. Eliel, W. F. Bailey, L. D. Kopp, R. L. Willer, D. M. Grant, R. Bertrand, K. A. Chrietensen, D. K. Dalling, M.W. Duch, E. Wenkert, F. M. Schell, and D. W. Cochran, J. Am. Chem. Soc. 1975; 97, 322.
60.E. L. Eliel and K. M. Pietrusiewicz, 13C NMR of nonaromatic heterocyclic compound. In Topics in 13C NMR(Ed. G. C. Lecy), vol 3, chap. 3, Wiley-Interscience, New York, 1979.