簡易檢索 / 詳目顯示

研究生: 呂宇哲
Lu, Yu-Che
論文名稱: 液膜超音波空蝕敲擊技術之發展
Development of peening technology by using ultrasonic cavitation in thin liquid layer
指導教授: 王逸君
Wang, Yi-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 75
中文關鍵詞: 表面機械處理液膜超音波空蝕敲擊有限元素法基因演算法放大因子快速傅立葉轉換
外文關鍵詞: Mechanical surface treatment, Ultrasonic cavitation peening, Finite element method, Genetic algorithm, Fast Fourier transform
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 敲擊法是使用最廣泛的表面機械處理及應力改質技術。其目的在於使材料表層產生壓縮殘留應力,用以消除機械元件或結構的應力侵蝕裂化,且提高材料的負載強度及疲勞壽命。液膜超音波空蝕敲擊系統能輸出較浸水式超音波空蝕敲擊系統還高的功率且僅需較低的輸入能量即能產生空蝕場,因此非常適合運用在工業上。以往的浸水式超音波空蝕敲擊系統需要準備水槽用來在水中產生空蝕效果,因此在使用水槽的過程中,會造成空間上的佔用以及實驗操作上的不方便性。本研究利用COMSOL有限元素軟體及最佳化基因演算法分析,來設計超音波換能器的最佳幾何尺寸及建立液膜超音波空蝕敲擊系統,利用空蝕汽泡反覆崩裂時所產生的應力波,來使材料表面上產生敲擊效應。並就不同液膜厚度及不同的單位面積敲擊時間,來進行空蝕敲擊的效果研究,並將敲擊結果送往工研院進行表面微結構顯微分析(SEM)與表面微硬度測量(Vicker's Hardness Tester)。分析結果顯示,改變液膜厚度及單位面積敲擊時間,確實會影響表面處理的效果。在觀察不同液膜厚度下之空蝕場型態時,發現有三種不同的空蝕場型態,並隨著液膜厚度的變化而改變。並利用壓力感測薄膜(PVDF,聚偏氟乙烯)放置在液膜下,且取得空蝕汽泡在破裂時所產生的敲擊訊號,並經過快速傅立葉轉換(FFT,Fast Fourier Transform)後,分析其頻譜訊號。以及利用COMSOL模擬分析無因次液膜寬度與放大因子之間的關係,並且發現無因次液膜寬度為1時,此時無因次液膜寬度再增加,放大因子便不在增加而逐漸趨近於平緩,反之無因次液膜寬度再減少,則放大因子會明顯的減少。

    Peening is the most common technology for mechanical surface treatment and surface stress improvement. The main purpose of technology is to induce compressive residual stress on material surface. This technology not only can eliminate stress corrosion cracking which is induced by tensile residual stress but also can improve the fatigue life and yield stress as well as tensile strength. Ultrasonic cavitation peening system (UCP) in thin liquid layer generate stronger power than immersion-type ultrasonic cavitation peening system and generate cavitation with lower input power which is attractive for industrial applications. For a general immersion-type ultrasonic cavitation peening system have to prepare water tank. That causes the experiment very inconvenience. This study employs COMSOL finite element method software associated with a genetic algorithm to optimize ultrasonic transducer and build ultrasonic cavitation peening system in thin liquid layer. The result of ultrasonic cavitation in thin liquid layer peening applied on stainless steel test piece specimen has done scanning electron microscope analysis and Vicker's hardness tester analysis. These analyses show that different thickness of liquid layers and different peening time per unit area are really effect of mechanical surface treatment. This study observe cavitation types with different thickness of liquid layers and discover three different cavitation types with different thin liquid layers. Moreover, this study use the pressure sensor (PVDF) to obtain the signal of peening which caused by bubbles collapses and use fast fourier transform (FFT) to analyze the spectrum. Furthermore, this study use the COMSOL software to analyze the variation of amplification factor with radius of liquid layers. If the radius of liquid layers is equal to one, then increasing the radius of liquid layers dose not make the amplification factor increase sharply.

    摘要 I ABSTRACT III 致謝 VI 目錄 VII 圖目錄 X 表目錄 XIII 符號說明 XIV 第一章 導論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與本文架構 7 第二章 超音波空蝕敲擊原理與基礎 9 2-1 壓電效應及超音波原理 9 2-2 超音波空蝕敲擊 15 2-3 超音波空蝕敲擊之應用 19 第三章 超音波換能器之最佳化設計 21 3-1 基因演算法簡介 21 3-2 基因演算法流程 21 3-2-1 編碼及初始族群 22 3-2-2 擇優 23 3-2-3 交配 24 3-2-4 突變 25 3-2-5 新子代及停止條件 26 3-3 基因演算法優缺點 27 3-4 超音波換能器最佳化設計 29 3-5 階梯型超音波發射器之設計與分析 31 3-5-1 階梯型超音波發射器之特性 32 3-5-2 階梯型超音波發射器最佳化設計 33 3-5-3 階梯型超音波空蝕敲擊系統之實驗架構 36 3-5-4 定點敲擊實驗結果分析 37 第四章 液膜超音波發射器之設計與分析 40 4-1 液膜超音波發射器之設計 40 4-2 液膜超音波發射器之分析 42 4-3 液膜寬度之模擬分析 43 4-4 液膜空蝕場之型態 46 第五章 液膜超音波空蝕敲擊實驗 50 5-1 實驗架構 50 5-2 位移平台與路徑程式 52 5-3 液膜超音波發射器敲擊效果評估 55 5-4 液膜空蝕敲擊效果與侵水式空蝕敲擊效果之比較 62 第六章 結論與未來展望 66 6-1 結論 66 6-2 未來展望 68 參考文獻 69 附錄A 平均功率與聲強計算 71 附錄B 單位面積敲擊時間換算 74 附錄C XY位移平台指令列表 75 自述 76

    [1]賴建宇, 高強度超音波與氣泡空蝕場應用於奈米粉體製備與養分 萃取, 國立成功大學機械工程研究所碩士論文, (2005)
    [2]P.R. Gogate and A.B. Pandit, Sonochemical Reactors: Scale Up Aspects, Ultrasonics Sonochemistry, Vol.11, pp.105-117, (2004)
    [3]溫傅亮等人, 藍杰文振動子共振腔體設計與動態行為之研究, 第十
    三屆中華民國振動與噪音學術研討會, (2005)
    [4]T.G. Leighton, Bubble population phenomena in acoustic cavitation, Ultrasonics Sonochemistry, Vol.2, (1994)
    [5]S. Curtis, E.R. delos Rios, C.A. Rodopoulos, A. Levers, Analysis of the effects of controlled shot peening on fatigue damage of high strength aluminum alloys, International Journal of Fatigue, Vol.25, No1, 25(1), pp.59-66, (2003)
    [6]J.E. Masse , G. Barreau , Laser generation of stress waves in metal Surface & Coatings Technology, Vol.70, No.2, pp.231-234 (1995)
    [7]P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Beranger, C. Lemaitre, Surface modifications induced in 316L steel by laser peening and shot-peening, Materials Science and Engineering A,Vol.280, No.2, pp.294-302, (2000)
    [8]C.S. Montross, T. Wei, L. Ye, G. Clark, Y.W. Mai, Laser shock processing and its effects on microstructure and properties of metal alloys: a review, International Journal of Fatigue,Vol.24, No.10, pp.1021-1036, (2002)
    [9]P. Peyre, A. Sollier, I. Chaieb, L. Berthe, E. Bartnicki, C. Braham, R. Fabbro , FEM simulation of residual stresses induced by laser penning , European Physical Journal-Applied Physics, Vol.23, No.2,pp.83-88, (2003)
    [10]E.S. Statnikov, O.V. Korolkov, V.N. Vityazev, Physics and mechanism of ultrasonic impact, Ultrasonics, Sup.44, pp.533-538, (2006)

    [11]D. Odhiambo, H. Soyama , Cavitation shotless peening for improvement of fatigue strength of carbonized steel, International Journal of Fatigue, Vol.25, No.9-11, pp.1217-1222, (2003)
    [12]H. Soyama, J.D. Park , M. Saka , Use of cavitating jet for introducing compressive residual stress, Journal of Manufacturing Science And Engineering-Transactions of The ASME, Vol.122, No.1, pp.83-89 (2000)
    [13]M. Turski, S. Clitheroe, A.D. Evans, C. Rodopoulos, D.J. Hughes, P.J. Withers, Engineering the residual stress state and microstructure of stainless steel with mechanical surface treatments, Applied Physics A, Vol.99, pp.549-556, (2010)
    [14]施智筌, 超音波空蝕敲擊技術之研究, 國立成功大學機械工程研究所, 碩士論文, (2013)
    [15]A. Moussatov, C. Granger, B. Dubus, Ultrasonic cavitation in thin liquid layers, Ultrasonics Sonochemistry , Vo.12, pp.415–422, (2005)
    [16]C. Sikalidis, Ceramic Based Intelligent Piezoelectric Energy Harvesting Device, ISBN 978-953-307-350-7, (2011)
    [17]T.G. Leighton, What is ultrasound? , Progress in Biophysics and Molecular Biology, Vol.93, pp.3-83, (2007)
    [18]L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sander, Fundamentals of Acoustic, 3rd edition, John Wiley&Sons, (1982)
    [19]B.Toukoniitty, J.P. Mikkola, D.Y. Murzin, T. Salmi, Utilization of electromagnetic and acoustic irradiation in enhancing heterogeneous catalytic reactions, General , Vol.279 , pp.1-22, (2005)
    [20]周鵬程, 遺傳演算法原理與應用:活用Matlab, 全華科技圖書股份有限公司, (2007)
    [21]Goldenberg, Genetic Algorithms in Search Optimization and Machine Learning, Addison Wesley, 1989
    [22]C.E. Brennen, Cavitation And Bubble Dynamics, Oxford University Press, (1995)

    下載圖示 校內:立即公開
    校外:2015-08-14公開
    QR CODE