簡易檢索 / 詳目顯示

研究生: 張尚任
Chang, Shang-Jan
論文名稱: 新型微探針之設計製作與測試及其於整合微加熱器在奈米加工之應用
Design, Fabrication and Characterization of Micro Probes Integrated with Micro Heaters and Their Applications on Nano-machining
指導教授: 李輝煌
Lee, Huei-Huang
李國賓
Lee, Gwo-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 106
中文關鍵詞: 微探針微機電系統原子力顯微鏡奈米加工微加熱器
外文關鍵詞: AFM, Nano-machining, Micro heater, MEMS, Micro probe
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用微機電系統(Micro-Electro-Mechanical-Systems, MEMS)製程技術成功地開發出一新型的微探針製程,利用改良式的雙層矽晶圓為製作底材,不必使用昂貴的SOI(Silicon on Isulator)晶片即可完成微探針的製作。而此探針的結構是在矽基材上一體成形,包含奈米級探尖、懸臂樑、探針基座。首先,在矽晶圓上摻雜高硼離子濃度的15微米磊晶層,並以非等向性蝕刻形成5微米厚的探尖,並進行探針尖尖銳化處理使探尖達到奈米等級尺寸。然後以非等向性蝕刻與蝕刻停止技術形成10微米厚的懸臂樑。使用原子力顯微鏡進行靜態測試,輔以雷射都卜勒位移計(Laser Doppler Vibrometer, LDV)進行動態測試,來量測微奈探針的彈性係數並進行實驗,結果顯示與設計值的範圍相符。本製程完全利用體型微加工技術使探針結構一體成形於矽基材上,具有極佳的機械強度與可撓度,而且提供比商用探針更簡單的製程。
      此外,本研究將鉑電阻整合於自製之微探針上,成功地於聚甲基丙烯甲酯( Polymethyl Methacrylate, PMMA)材料上進行次微米的圖形加工。本研究之鉑電阻利用蛇形狀電阻的設計方式,設計成電阻值為100~200歐姆,本研究之鉑電阻經過燒結(Sintering)過程後得到的最佳電阻溫度係數( Temperature coefficient of resistance)可達0.26 % /℃。當施以12.5毫安培的定流時,鉑電阻具有100~110℃。本研究並以微操縱平台配合微探針及微加熱器來對PMMA做加工,加工後的PMMA經原子力顯微鏡掃描後所得的影像顯示,本研究成功地在PMMA上加工出具數百奈米尺度的凹洞及線條;基於本實驗為初探奈米加工的可行性,若配合適當的探針之回授裝置及奈米定位器,可以達到奈米等級的塑膠材料熱加工。

      This study reports a new fabrication process for a micromachined probe and its application on nano-machining. The micro probe comprises a micro-cantilever, a nano-tip and a supporting beam, which is made of single-crystalline silicon monolithically. The new fabrication process starts with a 15-μm-thick epitaxial Si layer with heavily-boron doping on a silicon wafer. The 5-μm-thick nano-tip is formed by using anisotropic etching followed by oxidation sharpening process. Then a cantilever beam is formed by using back-side etching of an etch-stop Si layer (10 μm). The spring constant of the micro-fabricated probe is characterized by the force-curve method of an AFM (Atomic Force Microscope) system and the LDV (Laser Doppler Vibrometer) system. The experimental data are reasonably consistent with theoretical results and numerical data from finite element analysis (FEA). The developed probes have several advantages over commercially-available probes, including excellent mechanical strength and flexibility, cost-effectiveness, easy integration, and extensive applications.
      Furthermore, a micro-heater is integrated with these micro probes. The resistance of the heater is designed to be 100Ω ~ 200Ω. Experimental data show that the temperature coefficient of resistance (TCR) of the micro-heater is 0.26 % /℃ after the sintering process. This information could be used to indicate the temperature of the heater during operation. The micro probe integrated with the micro heater is then used to fabricate patterns with a feature of hundreds of nanometer on PMMA ( Polymethyl Methacrylate) substrates by applying an operating current of 12.5mA. The AFM images show that the size of the feature on the PMMA is consistent with the tip of the micro probe. The feasibility of nano-fabrication on plastics using the developed micro-probe has been successfully demonstrated. The development of the micro-probes could be of crucial needs for nano-machining.

    中文摘要 …………………………………………………………………Ⅰ 英文摘要 …………………………………………………………………III 誌謝 ………………………………………………………………………V 目錄 ………………………………………………………………………Ⅶ 表目錄 ……………………………………………………………………IX 圖目錄 ……………………………………………………………………X 符號說明…………………………………………………………………XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 3 1.3 文獻回顧 5 1.4 研究方法與架構 13 第二章 理論基礎 17 2.1 微探針結構設計原理 17 2.2 微探針之測試原理 18 (動態測試之力-位移曲線原理) 第三章 微米探針及微加熱器之設計 24 3.1 微米探針之設計 24 3.1.1 主結構材料之選擇 24 3.1.2 微結構之設計 26 3.1.3 矽晶片之離子佈植 28 3.2 整合微加熱器之微探針之設計 29 3.2.1 加熱電阻之材料選擇 29 3.2.2 鉑電阻之計算 30 3.2.3 電極及絕緣層的材料選擇 32 3.2.4 微結構之設計 33 第四章 微米探針及微加熱器之製作 35 4.1微機電製程技術簡介 36 4.2微米探針之製作流程 48 4.3整合微加熱器之微米探針之製作流程 62 4.4製程討論 71 第五章 結果與討論 73 5.1 微米探針之彈性係數量測 5.1.1 靜態測試 73 (原子力顯微鏡量測法) 5.1.2 動態測試 77 (都卜勒效應之共振頻率量測法) 5.1.3 有限元素分析 82 5.1.4 結果與討論 83 5.2 微加熱器之量測 85 5.2.1 鉑電阻之測試 85 5.3 整合微加熱器之微米探針之測試 89 5.3.1實驗架設 89 5.3.2整合微加熱器之探針加工測試 89 第六章 結論與未來展望 99 6.1結論 99 6.2未來展望 101 參考文獻 102 自述 106

    [1] G. Binnig, H. Rohrer, C. Gerber, “Atomic force microscope”, Phys. Rev. Lett., 56 , 930 (1986)
    [2] M. A. McCord, R.R.W. Pease, “Lithography with the scanning tunneling microscope”, J. Vac. Sci. Technol. B, vol.4, 86 (1986)
    [3] T. R. Albercht, M. M. Dovek, M. D. Kirk, “Nanometer scale hole formation on graphite using a scanning tunneling microscope”, Appl. Phys. Lett., vol.55, 1727 (1989)
    [4] J. A. Dagata, J. Schneir, H. H. Harary, “Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air”, Appl. Phys. Lett., vol.56, 2001 (1990)
    [5] D. Saya, K. Fukushima, H. Toshiyoshi, G. Hashiguchi, H. Fujita, H. Kawakatsu, “Fabrication of single-crystal silicon cantilever array”, S. and A. A 95, 281-287 (2002)
    [6] D. W. Lee, T. Ono, M. Esashi, “Electrical and thermal recording techniques using a heater integrated microprobe”, J. micromech. microeng. 12, 841-848 (2002)
    [7] M. Zhang, D. Bullen, S. W. Chung, S. Houg, Z. Fan, C. A. Mirkin, C. Liu, “A MEMS nanoplotter with high-density parallel dip-pen nanolithography probe arrays”, Nanotechnology 13, 212-217 (2002)
    [8] P. L. Cheng, C. C. Lee, W. Hsu, “Design and fabrication of a strain-type scanning probe for atomic force microscopy”, J. Chinese society of Mech. Enger. , vol.20, no.1, 1-9 (1999)
    [9] 陳思翰, 林鶴南, “彎式近場光學探針彈性係數之量測”, 科儀新知第二十一卷第六期, 56-59 (2000)
    [10] C. T. Gibson, G. S. Watson, S. Myhra, “Determination of the spring constants of probes for force microscopy/spectroscopy”, Nanotechnology 7, 259-262 (1996)
    [11] H. J. Mamin, D. Rugar, “Thermomechanical writing with an atomic force microscope tip”, Appl. Phys. Lett. ,61 (8), 24 Aug. (1992)
    [12] R. P. Ried, H. J. Mamin, B. D. Terris, L. S. Fan, D. Rugar, “6-Mhz 2N/m piezoresistive atomic force microscope cantilevers with INCISIVE tips”, J. of MEMS, vol. 6, NO. 4, Dec. (1997)
    [13] B. W. Chui, T. D. Stowe, Y. S. Ju, K. E. Goodson, T. W. Kenny, H. J. Mamin, B. D. Terris, R. P. Ried, D. Rugar, ”Low stiffness cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage”, J. of MEMS, vol. 7, NO. 1, March (1998)
    [14] E. Eleftheriou, T. Antonakopoulos, G. K. Binnig, G. Cherubini, M. Despont, A. Dholakia, U. Durig, M. A. Lantz, H. Pozidis, H. E. Rothuizen, P. Vettiger, “Millipede-a MEMS-based scanning probe data storage system”, IEEE Trans. Magnetics, APMRC 2002 conf. (2002)
    [15] G. G. Shahidi, “SOI technology for the GHz era”, IBM J. RES. & DEV., vol. 46, NO. 2/3, MARCH/MAY (2002)
    [16] Madou, “Fundamentals of microfabrication”, p67 ,CRC, (1997)

    [17] C. Liu, R. Gamble, “Mass producible monolithic silicon probes for scanning probe microscope”, Sensors and actuators A 71, 233-237 (1998)
    [18] J. M. Gere, S. P. Timoshenko, “Mechanics of materials” forth edition, McGraw-Hill, 210 (1998)
    [19] B. Cappella, G. Dietler, “Force-distance curves by atomic force microscopy”, Surf. Sci. Rep. 34 (1-3) (1999)
    [20] http://www.polytec.com/cgi-bin/clickgo.cgi
    [21] G. B. Lee, J. H. Hu, and J. J. Miau, “A Flexible Skin with Temperature Sensor Array” , Journal of the Chinese Institute of Engineers (2002)
    [22] G. T. A. Kovas, “ Micromachined Transducers Sourcesbook”, McGraw-Hill, pp.79 (1998)
    [23] A. Thurber, “ Bur Standards Spec. Publ. ” 400-64, tables 10-14 (1986)
    [24] M. Shikida, K. Sato, K. Tokoro, D. Uchikawa, “Comparision of ansiotropic etching properties between KOH and TMAH solutions”, IEEE MEMS (1999)
    [25] P. Sullivan, B. W. Offord, M. E. Aklufi, “Tetra-methyl ammonium hydroxide (TMAH) preferential etching for infrared pixel arrays”, SSC San Diego, CA 92152-5001 (2000)
    [26] K. B. Song, S. Q. Lee, J. Kim, Jg. Kim, K. H. Park, “Fabrication of a high throughput apertured tip by the use of bird’s beak effect: A potential fabrication technique for near-field optical data storage”, IEEE MEMS, 237-239 (2002)
    [27] T.R. Albrecht, P. Gutter, D. Horne, D. Rugar, “Frequency modulation detection using high-Q cantilever for enhanced force microscope sensitivity”, Journal of Applied Phys, Vol.69, 668-673 (1991)
    [28] J. Yang, T. Ono, M. Esashi “ Mechanical Behavior of Ultrathin microcantilever”, Sensors and Actuators A, Vol. 82, 102-107 (2000)
    [29] H. C. Tsai, W. L. Fang, “Determining the Poisson’s ratio of thin film materials using resonant method”, Sensors and Actuators A, Vol. 103, 377-383 (2003)
    [30] NTMDT Corp., SPM introduction, http://www.ntmdt.ru.
    [31] G. T. A. Kovacs, “Micromachined transducers sourcesbook”, McGraw-Hill, 309 (2000)

    下載圖示 校內:立即公開
    校外:2004-07-13公開
    QR CODE