| 研究生: |
梁峻瑋 Liang, Jyun-Wei |
|---|---|
| 論文名稱: |
單模及雙模態光學渦流的鬆弛震盪頻率與調製特性研究 Research on relaxation oscillation frequency and modulation characteristics in single-mode and dual-mode optical vortex |
| 指導教授: |
魏明達
Wei, Ming-Dar |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 光學渦流 、混沌 、極端事件 、調製訊號 、單模態 、多模態 |
| 外文關鍵詞: | vortex, chaos, extreme events, modulation, single-mode, multimode |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文研究了調製泵源功率的 Nd:YVO4雷射系統以輸出各模態的光學渦流,我們取樣了ℓ=0、1、2 三個整數倍股數的單模態以及ℓ=0~1、ℓ=1~2兩單模態交界處的多模態,透過後續對調製訊號的處理整理出了各個模態的相關係數圖、bifurcation 圖等資訊,可以藉由這些數據觀察到多模態具有兩個單模態的特性。我們也將 808 泵源訊號與腔體輸出訊號做比較,利用擬合後的數據求出了相位差及振幅比等資訊,在 ROF 附近時振幅比皆有大幅度的改變,而相位差則是有大約移動了半個週期π的行為出現。
This thesis investigates the modulation of pump power in an Nd:YVO4 laser system to generate optical vortices in different modes. We sample the single-mode signals for ℓ =0, 1, and 2 (integer multiples) as well as the multimode signals at the boundary of ℓ=0~1 and ℓ=1~2. Through subsequent signal processing, we analyze and present various information such as correlation coefficient maps, bifurcation diagrams for each mode. These data allow us to observe the characteristics of multimode behavior, which exhibit the properties of two single modes. We also compare the 808nm pump source signal with the cavity output signal and extract information such as phase difference and amplitude ratio through data fitting. Near the relaxation oscillation frequency (ROF), we observe significant changes in the amplitude ratio, while the phase difference exhibits behavior similar to a half-period shift of π.
[1] J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 82, 560-567 (1909).
[2] R. A. Beth, “Mechanical Detection and Measurement of the Angular Momentum of Light,” Physical Review 50, 115-125 (1936).
[3] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Physical Review A 45, 8185-8189 (1992).
[4] W. Shao , S. Huang , X. Liu , M. Chen , “Free-space optical communication with perfect optical vortex beams multiplexing,” Optics Communications 427, 545-550(2018).
[5] Fraczek E., Fraczek W. , Popiolek-Masajada A., “ Laser Beam Positioning by Using a Broken-Down Optical Vortex Marker,” Applied Sciences 11, 16 , 7677 (2021).
[6] Gregory Foo, David M. Palacios, Grover A. Swartzlander, “Optical vortex coronagraph,” Optics Letters 30, 24, 3308-3310 (2005).
[7] Y.Tian, L. Wang, G. Duan, L. “Yu Multi-trap optical tweezers based on composite vortex beams,” Optics Communications 485, 126712 (2021).
[8] Popiolek-Masajada, A, Masajada, J, Lamperska, W, “Phase recovery with the optical vortex microscope,” Measurement Science and Technology 30, 10, 105202 (2019).
[9] Coles, MM, “An upper bound on the rate of information transfer in optical vortex beams,” Laser Physics Letters 15, 9, 095202 (2018)
[10] Z. Guo, H. Liu, L. Xiang, L. Chen, J. Yang, J. Wen, Y. Shang, T. Wang, F. Pang, “Generation of Perfect Vortex Beams With Polymer-Based Phase Plate,” IEEE Photonics Technology Letters 32, 10, 565-568 (2020)
[11] Serrano-Trujillo A ., Anderson M.E., “Surface profilometry using vortex beams generated with a spatial light modulator,” Optics Communications 427, 557-562 (2018).
[12] X. Zhang, Y. Su, J. Ni, Z. Wang, Y. Wang, C. Wang, F. Ren, Z. Zhang, H. Fan, W. Zhang, G. Li, Y. Hu, J. Li, D. Wu, J. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating,” Applied Physics Letters 111, 6, 061901 (2017).
[13] J. Li, Y. Yao, J Yu; K. Xia; C. Zhou, “Efficient Vortex Laser With Annular Pumping Formed by Circle Dammann Grating,” IEEE Photonics Technology Letters 28, 4, 473-476 (2016).
[14] Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Applied Physics Letters 101, 031113 (2012).
[15] Q. Liu, Y. Zhao, Wei Zhou, D. Shen, “Vortex operation in Er:LuYAG crystal laser at ∼1.6 μm, ” Optical Materials 71, 31-34 (2017).
[16] Henri Poincaré, The Three-Body Problem and the Equations of Dynamics, (Springer Science&Business Media , 2017)
[17] Edward N. Lorenz, “Deterministic Nonperiodic Flow, ” Journal of the Atmospheric Sciences 20, 2 130-141 (1963).
[18] W. Koechner, et al., Solid-State Laser Engineering(ed 4, 1996).
[19] T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers, ” Quantum and Semiclassical Optics 9, 5 765-784 (1997).
[20] F. Lin, J. Liu, “Chaotic lidar, ” IEEE Journal of Selected Topics in Quantum Electronics 10, 5 991-997 (2004).
[21] Giovanni Blandino, “ What is an extreme event? ”(Eurac Research MAGAZINE_ Article, 2022)
[22] P. Kjeldsen, “A sudden disaster-in Extreme Waves, ” Rogue Waves 2000, 19-35 (2001).
[23] S. Aberg and G. Lindgren, “Height distribution of stochastic Lagrange ocean waves, ” Prob. Eng. Mech. 23, 359-363 (2008).
[24] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves, ” Nature 450, 1054-1057 (2007).
[25] J. M. Dudley, F. Dias, M. Erkintalo, G. Genty, “Instabilities, breathers and rogue waves in optics, ” Nature Photonics 8, 10 755–764 (2014).
[26] M. D. Wei1, C. H. Chen, H. H. Wu, D. Y. Huang, C. H. Chen “Chaos suppression in the transverse mode degeneracy regime of a pump-modulated Nd:YVO4 laser ,” Journal of Optics A: Pure and Applied Optics, 11 (4), 045504 (2009).
[27] J. Zhang, S. J. Huang, F. Q. Zhu, W. Shao, M. S. Chen, “Dimensional properties of Laguerre–Gaussian vortex beams, ” Applied Optics 56, 12 3556-3561 (2017).
[28] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, S. Ashrafi, “Optical communications using orbital angular momentum beams, ” Advances in Optics and Photonics 7 , 11 66-106 (2015).
[29] M. Padgett; J. Courtial; L. Allen, “Light’s Orbital Angular Momentum, ” Physics Today 57 , 5 35–40 (2004).
[30] S. Qiu, T. Liu, Z. L. Li, C. Wang, Y. Ren, Q. L. Shao, C.Y. Xing, “Influence of lateral misalignment on the optical rotational Doppler effect, ” Applied Optics 58, 10 2650-2655 (2019).
[31] J. H. McLeod, “The Axicon: A New Type of Optical Element, ” Journal of the Optical Society of America 44, 8 592-597 (1954).
[32] J. Durnin, J. J. Miceli, Jr., J. H. Eberly, “Diffraction-free beams, ” PHYSICAL REVIEW LETTERS 58, 15 1499-1501 (1987).
[33] X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range,” Applied Optics 54, 10641-10649 (2015).
[34] S. Chávez-Cerda, G.H.C New, “Evolution of focused Hankel waves and Bessel beams,” Optics Communications 181, 4-6 369-377 (2000).
[35] M. D. Wei, W. L. Shiao, Y. T. Lin, “Adjustable generation of bottle and hollow beams using an axicon,” Optics Communications 248, 1-3 7-14 (2005).
[36] P. A. Khandokhin, Y. I. Khanin, “Autostochastic operation of a solid-state ring laser with low-frequency periodic loss modulation,” Soviet Journal of Quantum Electronics 14, 7 (1984).
[37] W. Klische, H. R. Telle, C. O. Weiss, “Chaos in a solid-state laser with a periodically modulated pump,” Optics Letters 9, 12 561-563 (1984).
[38] M. D. Wei, W. F. Hsieh, “Cavity-configuration-dependent nonlinear dynamics in Kerr-lens mode-locked lasers,” Journal of the Optical Society of America B 17, 8 1335-1342 (2000).
[39] J. M. Greene, “A method for determining a stochastic transition,” Journal of Mathematical Physics 20, 6 1183-1201 (1979).
[40] A. Volyar, M. Bretsko, Ya. Akimova, Yu. Egorov, “Measurement of the vortex and orbital angular momentum spectra with a single cylindrical lens,” Applied Optics 58, 21 5748-5755 (2019).