| 研究生: |
林緯博 Lin, Wei-Po |
|---|---|
| 論文名稱: |
以生物試驗法與液相層析串聯式質譜儀檢測臺灣污水處理廠中內分泌干擾物質與其氯化衍生物之宿命與活性變化 Comprehensive assessment of endocrine disrupting chemicals and their chlorinated derivatives in wastewater treatment plants using bioassays and LC-MS/MS |
| 指導教授: |
周佩欣
Chou, Pei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 污水處理廠 、內分泌干擾活性 、氯化衍生物 、報導基因試驗法 、液相層析串聯式質譜儀 |
| 外文關鍵詞: | Wastewater treatment plants, Endocrine disrupting activities, Chlorinated derivatives, Yeast-based reporter gene assays, Liquid chromatography tandem mass spectrometry |
| 相關次數: | 點閱:201 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於近年來工業科技的快速進步,許多內分泌干擾物質被廣泛應用於工業製程及日常用品,伴隨人類活動而大量釋放至環境中,其中包括芳香烴受體促進物質、類(抗)雄激素與類(抗)鹽皮質激素物質,當這些物質隨著廢水排放而進入污水處理廠,便可能在後續之加氯消毒流程產生氯化衍生物並排放至承受水體中,因此氯化衍生物之生成與其對水體生態可能之危害需要受到關注。
本研究以報導基因酵母菌生物試驗法分析臺灣五座污水處理廠各處理單元放流水中的芳香烴受體促進活性、類(抗)雄激素以及類(抗)鹽皮質激素活性,並利用液相層析串聯式質譜儀分析樣本中選定之EDCs與其氯化衍生物之濃度。生物試驗法之結果顯示各污水廠之樣本皆無檢測出類雄激素活性,而在所有水相以及懸浮固體相樣本中皆有檢出芳香烴受體促進活性與抗鹽皮質激素活性,抗雄激素活性則主要於水相樣本中檢出。
氯化衍生物之生物試驗結果顯示,對羥基苯甲酸甲酯之單氯衍生物具有顯著的芳香烴受體促進活性與抗雄激素活性,而其雙氯衍生物則僅誘發抗雄激素活性。對羥基苯甲酸丙酯氯化混合物能誘發較原物質更強之芳香烴受體促進活性與抗雄激素活性,三氯沙氯化混合物之芳香烴受體促進活性較三氯沙弱,而抗雄激素活性則略有增強。壬基酚氯化混合物依舊不具有芳香烴受體促進活性,且其誘發之抗雄激素活性有明顯增強之趨勢。
液相層析串聯式質譜儀之分析結果指出水相樣本中主要檢測出雙酚A (ND~923 ng/L)、雙氯雙酚A (ND~35.9 ng/L)、對羥基苯甲酸甲酯 (12.4~2422.7 ng/L)、單氯對羥基苯甲酸甲酯 (ND~26.9 ng/L)、三氯沙 (61.4~904.4 ng/L)以及壬基酚 (108.7~7715.8 ng/L)。此外,將水相樣本中經LC-MS/MS檢測出之各類EDCs濃度轉換為標準品當量濃度後與生物試驗之結果進行比較,可發現生物試驗所換算之標準品當量濃度遠高於儀器分析,可能之原因為環境樣本中含有之多種EDCs並未被選定為待測物質,因此其貢獻之活性未被計入,又或是樣本中複雜物質之組成產生協同作用而導致生物試驗所得活性偏高。
綜觀本研究之結果,此五座污水處理廠並無法完全去除內分泌干擾物質,甚至可能因後續加氯消毒流程而產生活性更強之氯化衍生物。未來針對環境中內分泌干擾物質氯化衍生物之影響與流佈值得更多研究關注。
There are various kinds of endocrine disrupting chemicals (EDCs) present in the effluent of wastewater treatment plants (WWTPs), such as chemicals showing disrupting activities for aryl hydrocarbon receptor (AhR), androgen receptor (AR), or mineralocorticoid receptor (MR). These EDCs may further react with chlorine to form chlorinated derivatives in disinfection process of WWTPs. In this study, samples from different treatment stages of WWTPs were collected and analyzed by recombinant yeast bioassays and LC-MS/MS to investigate the endocrine disrupting activities and concentrations of target EDCs and their chlorinated derivatives. Our results showed that AhR agonist activities, anti-androgenic activities, and anti-mineralocorticoid activities were detected frequently in the dissolved phase of WWTP influents and effluents. The chlorinated derivatives of selected EDCs still showed AhR agonist activities, AR antagonist activities, and MR antagonist activities in the bioassays, which were even stronger than their parent compounds. LC-MS/MS results showed that some EDCs, such as methylparaben, nonylphenol, and triclosan were often detected at ng/L to μg/L levels. In addition, chlorinated derivatives of methylparaben and bisphenol A were also often detected in WWTP samples. More attention should be paid to the formation of chlorinated EDCs and their potential risk to aquatic organisms.
Abdel-Shafy, H. I., & Mansour, M. S. M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107-123. (2016).
Allinson, M., Shiraishi, F., Salzman, S. A., & Allinson, G. In vitro assessment of retinoic acid and aryl hydrocarbon receptor activity of treated effluent from 39 wastewater-treatment plants in Victoria, Australia. Archives of Environmental Contamination and Toxicology, 61(4), 539-546. (2011).
Amakura, Y., Tsutsumi, T., Nakamura, M., Kitagawa, H., Fujino, J., Sasaki, K., et al. Toyoda, M. Preliminary screening of the inhibitory effect of food extracts on activation of the aryl hydrocarbon receptor induced by 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Biological & Pharmaceutical Bulletin, 25(2), 272-274. (2002).
Andra, S. S., Charisiadis, P., Arora, M., Vliet-Ostaptchouk, J. V. v., & Makris, K. C. Biomonitoring of human exposures to chlorinated derivatives and structural analogs of bisphenol A. Environment International, 85, 352-379. (2015).
Barcelo´, M. P. a. D., & Ventura, A. D. a. F. Low nanogram per liter determination of halogenated nonylphenols, nonylphenol carboxylates, and their non-halogenated precursors in water and sludge by liquid chromatography electrospray tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 14(5), 516-527. (2003).
Berger, E., Potouridis, T., Haeger, A., Puttmann, W., & Wagner, M. Effect-directed identification of endocrine disruptors in plastic baby teethers. J Appl Toxicol, 35(11), 1254-1261. (2015).
Blankenship, A. L., Kannan, K., Villalobos, S. A., Villeneuve, D. L., Falandysz, J., Imagawa, T., et al. Giesy, J. P. Relative potencies of individual polychlorinated naphthalenes and halowax mixtures to induce Ah receptor-mediated responses. Environmental Science & Technology, 34(15), 3153-3158. (2000).
Błędzka, D., Gromadzińska, J., & Wąsowicz, W. Parabens. From environmental studies to human health. Environment International, 67, 27-42. (2014).
Boberg, J., Taxvig, C., Christiansen, S., & Hass, U. Possible endocrine disrupting effects of parabens and their metabolites. Reproductive Toxicology, 30(2), 301-312. (2010).
Busetti, F., Heitz, A., Cuomo, M., Badoer, S., & Traverso, P. Determination of sixteen polycyclic aromatic hydrocarbons in aqueous and solid samples from an Italian wastewater treatment plant. Journal of Chromatography A, 1102(1-2), 104-115. (2006).
Canosa, P., Rodr´ıguez, I., Rub´ı, E., Negreira, N., & Cela, R. Formation of halogenated by-products of parabens in chlorinated water. Analytica Chimica Acta, 575(1), 106-113. (2006).
Carlesso, L. C., Sturgeon, J. A., & Zautra, A. J. Exploring the relationship between disease-related pain and cortisol levels in women with osteoarthritis. Osteoarthritis Cartilage, 24(12), 2048-2054. (2016).
Chang, H., Wan, Y., Wu, S., Fan, Z., & Hu, J. Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters: comparison to estrogens. Water Research, 45(2), 732-740. (2011).
Chen, J., Saili, K. S., Liu, Y., Li, L., Zhao, Y., Jia, Y., et al. Huang, C. Developmental bisphenol A exposure impairs sperm function and reproduction in zebrafish. Chemosphere, 169, 262-270. (2017).
Cleland, G. B., Oliver, B. G., & A, R. Bioaccumulation of halogenated aromatic hydrocarbons in C57B1/6 and DBA/2 mice following consumption of Great Lakes coho salmon (Oncorhynchus kisutch). Chemosphere, 17(2), 405-420. (1988).
Dagnino, S., Gomez, E., Picot, B., Cavailles, V., Casellas, C., Balaguer, P., & Fenet, H. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants. Science of the Total Environment, 408(12), 2608-2615. (2010).
Denison, M. S., & Nagy, S. R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annual Review of Pharmacology and Toxicology, 43, 309-334. (2003).
Dondi, D., Limonta, P., Moretti, R. M., Marelli, M. M., Garattini, E., & Motta, M. Antiproliferative effects of luteinizing hormone-releasing hormone (LHRH) agonists on human androgen-independent prostate cancer cell line DU 145: evidence for an autocrine-inhibitory LHRH loop. Cancer Research, 54(15), 4091-4095. (1994).
Engvall, E., & Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry, 8(9), 871-874. (1971).
Fan, Z., Hu, J., An, W., & Yang, M. Detection and Occurrence of Chlorinated Byproducts of Bisphenol A, Nonylphenol, and Estrogens in Drinking Water of China: Comparison to the Parent Compounds. Environmental Science & Technology, 47(19), 10841-10850. (2013).
Fang, Y. X., Ying, G. G., Zhao, J. L., Chen, F., Liu, S., Zhang, L. J., & Yang, B. Assessment of hormonal activities and genotoxicity of industrial effluents using in vitro bioassays combined with chemical analysis. Environmental Toxicology and Chemistry, 31(6), 1273-1282. (2012).
Fukazawa, H., Hoshino, K., Shiozawa, T., Matsushita, H., & Terao, Y. Identification and quantification of chlorinated bisphenol A in wastewater from wastepaper recycling plants. Chemosphere, 44(5), 973-979. (2001).
Fukazawa, H., Watanabe, M., Shiraishi, F., Shiraishi, H., Shiozawa, T., Matsushita, H., & Terao, Y. Formation of Chlorinated Derivatives of Bisphenol A in Waste Paper Recycling Plants and Their Estrogenic Activities. Journal of health science, 48(3), 242-249. (2002).
Fuller, P. J., Yao, Y., Yang, J., & Young, M. J. Mechanisms of ligand specificity of the mineralocorticoid receptor. Journal of Endocrinology, 213(1), 15-24. (2012).
Furuzono, S., Meguro, M., Miyauchi, S., Inoue, S., Homma, T., Yamada, K., et al. Nagayama, T. A novel aldosterone synthase inhibitor ameliorates mortality in pressure-overload mice with heart failure. European Journal of Pharmacology, 795, 58-65. (2017).
Gemmill, B., Pleskach, K., Peters, L., Palace, V., Wautier, K., Park, B., et al. Tomy, G. T. Toxicokinetics of tetrabromoethylcyclohexane (TBECH) in juvenile brown trout (Salmo trutta) and effects on plasma sex hormones. Aquatic Toxicology, 101(2), 309-317. (2011).
Giulivo, M., Lopez de Alda, M., Capri, E., & Barcelo, D. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environmental Research, 151, 251-264. (2016).
Hoffmann, M., Fiedor, E., & Ptak, A. Bisphenol A and its derivatives tetrabromobisphenol A and tetrachlorobisphenol A induce apelin expression and secretion in ovarian cancer cells through a peroxisome proliferator-activated receptor gamma-dependent mechanism. Toxicology Letters, 269, 15-22. (2017).
Horii, Y., Khim, J. S., Higley, E. B., Giesy, J. P., Ohura, T., & Kannan, K. Relative potencies of individual chlorinated and brominated polycyclic aromatic hydrocarbons for induction of aryl hydrocarbon receptor-mediated responses. Environmental Science & Technology, 43(6), 2159-2165. (2009).
Inagaki, T., Smith, N. L., Sherva, K. M., & Ramakrishnan, S. Cross-generational effects of parental low dose BPA exposure on the Gonadotropin-Releasing Hormone3 system and larval behavior in medaka (Oryzias latipes). Neurotoxicology, 57, 163-173. (2016).
Ito-Harashima, S., Shiizaki, K., Kawanishi, M., Kakiuchi, K., Onishi, K., Yamaji, R., & Yagi, T. Construction of sensitive reporter assay yeasts for comprehensive detection of ligand activities of human corticosteroid receptors through inactivation of CWP and PDR genes. Journal of Pharmacological and Toxicological Methods, 74, 41-52. (2015).
Jarosova, B., Blaha, L., Vrana, B., Randak, T., Grabic, R., Giesy, J. P., & Hilscherova, K. Changes in concentrations of hydrophilic organic contaminants and of endocrine-disrupting potential downstream of small communities located adjacent to headwaters. Environment International, 45, 22-31. (2012).
Jeuken, A., Keser, B. J. G., Khan, E., Brouwer, A., Koeman, J., & Denison, M. S. Activation of the Ah Receptor by Extracts of Dietary Herbal Supplements, Vegetables, and Fruits. Journal of Agricultural and Food Chemistry, 51(18), 5478-5487. (2003).
Kavlock, R. J., Daston, G. P., DeRosa, C., Fenner-Crisp, P., Gray, L. E., Kaattari, S., et al. Tilson, H. A. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environmental Health Perspectives, 104(Suppl 4), 715-740. (1996).
Knet, M., Wartalski, K., Hoja-Lukowicz, D., Tabarowski, Z., Slomczynska, M., & Duda, M. Analysis of porcine granulosa cell death signaling pathways induced by vinclozolin. Theriogenology, 84(6), 927-939. (2015).
Kwon, J.-T., Seo, G.-B., Kim, H.-M., Shim, I., Lee, B., Jung, J.-Y., et al. Choi, K. Evaluation of comparative cytotoxicity of spray-type chemicals used in household products. Molecular & Cellular Toxicology, 9(1), 51-56. (2013).
Li, J. P., Phadnis-Moghe, A. S., Crawford, R. B., & Kaminski, N. E. Aryl hydrocarbon receptor activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs human B lymphopoiesis. Toxicology, 378, 17-24. (2017).
Li, W., Shi, Y., Gao, L., Liu, J., & Cai, Y. Occurrence, fate and risk assessment of parabens and their chlorinated derivatives in an advanced wastewater treatment plant. Journal of Hazardous Materials, 300, 29-38. (2015).
Li, W. H., Shi, Y., Gao, L., Liu, J., & Cai, Y. Occurrence and human exposure of parabens and their chlorinated derivatives in swimming pools. Environmental Science and Pollution Research, 22(22), 17987-17997. (2015).
Liscio, C., Abdul-Sada, A., Al-Salhi, R., Ramsey, M. H., & Hill, E. M. Methodology for profiling anti-androgen mixtures in river water using multiple passive samplers and bioassay-directed analyses. Water Research, 57, 258-269. (2014).
Liu, S., Ying, G. G., Zhao, J. L., Chen, F., Yang, B., Zhou, L.-J., & Lai, H.-j. Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1218(10), 1367-1378. (2011).
Liu, Z. H., Kanjo, Y., & Mizutani, S. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment - physical means, biodegradation, and chemical advanced oxidation: a review. Science of the Total Environment, 407(2), 731-748. (2009).
Mahjoub, O., Leclercq, M., Bachelot, M., Casellas, C., Escande, A., Balaguer, P., et al. Fenet, H. Estrogen, aryl hydrocarbon and pregnane X receptors activities in reclaimed water and irrigated soils in Oued Souhil area (Nabeul, Tunisia). Desalination, 104-113. (2009).
Mandal, P. K. Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology. Journal of Comparative Physiology B, 175(4), 221-230. (2005).
Manickum, T., & John, W. Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa). Science of the Total Environment, 468-469, 584-597. (2014).
Marin˜o, I. G. l., Quintana, J. B., Rodrı´guez, I., & Cela, R. Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate- mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS). Water Research, 45(20), 6770-6780. (2011).
Martinovic-Weigelt, D., Wang, R. L., Villeneuve, D. L., Bencic, D. C., Lazorchak, J., & Ankley, G. T. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads. Aquatic Toxicology, 101(2), 447-458. (2011).
Miller, C. A. A human aryl hydrocarbon receptor signaling pathway constructed in yeast displays additive responses to ligand mixtures. Toxicology and Applied Pharmacology, 160(3), 297-303. (1999).
Munoz Durango, N., Vecchiola, A., Gonzalez-Gomez, L. M., Simon, F., Riedel, C. A., Fardella, C. E., & Kalergis, A. M. Modulation of immunity and inflammation by the mineralocorticoid receptor and aldosterone. BioMed Research International, 2015, 652738. (2015).
Naderi, M., Wong, M. Y., & Gholami, F. Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults. Aquatic Toxicology, 148, 195-203. (2014).
Pape, J., Woudneh, M. B., Grace, R., MacGillivray, A. R., Fikslin, T., & Cosgrove, J. R. Fate of triclosan in tertiary wastewater treatment: chlorination. Water Quality Research Journal of Canada, 48(4), 333-343. (2013).
Peng, L., Wang, B., & Ren, P. Reduction of MTT by flavonoids in the absence of cells. Colloids Surf B Biointerfaces, 45(2), 108-111. (2005).
Pycke, B. F., Geer, L. A., Dalloul, M., Abulafia, O., Jenck, A. M., & Halden, R. U. Human fetal exposure to triclosan and triclocarban in an urban population from Brooklyn, New York. Environmental Science & Technology, 48(15), 8831-8838. (2014).
Rao, K., Li, N., Ma, M., & Wang, Z. In vitro agonistic and antagonistic endocrine disrupting effects of organic extracts from waste water of different treatment processes. Frontiers of Environmental Science & Engineering, 8(1), 69-78. (2014).
Rule, K. L., Ebbett, V. R., & Vikesland, P. J. Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan. Environmental Science and Technology, 39(9), 3176-3185. (2005).
Stalter, D., Magdeburg, A., Wagner, M., & Oehlmann, J. Ozonation and activated carbon treatment of sewage effluents: removal of endocrine activity and cytotoxicity. Water Research, 45(3), 1015-1024. (2011).
Struthers, A., Krum, H., & Williams, G. H. A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clinical Cardiology, 31(4), 153-158. (2008).
Terasaki, M., Abe, R., Makino, M., & Tatarazako, N. Chronic toxicity of parabens and their chlorinated by-products in Ceriodaphnia dubia. Environmental Toxicology, 30(6), 664-673. (2013).
Terasaki, M., Kamata, R., Shiraishi, F., & Makino, M. Evaluation of estrogenic activity of parabens and their chlorinated derivatives by using the yeast two-hybrid assay and the enzyme-linked immunosorbent assay. Environmental Toxicology, 28(1), 204-208. (2009).
Terasaki, M., & Makino, M. Determination of chlorinated by-products of parabens in swimming pool water. International Journal of Environmental Analytical Chemistry, 88(13), 911-922. (2008).
Terasaki, M., Takemura, Y., & Makino, M. Paraben-chlorinated derivatives in river waters. Environmental Chemistry Letters, 10(4), 401-406. (2012).
Terasaki, M., Yasuda, M., Makino, M., & Shimoi, K. Aryl hydrocarbon receptor potency of chlorinated parabens in the aquatic environment. Environmental Science: Water Research & Technology(3), 375-382. (2015).
Weltin, D., Gehring, M., Tennhardt, L., Vogel, D., & Bilitewski, B. (2002). Occurrence and fate of Bisphenol A during wastewater and sewage sludge treatment in selected German wastewater treatment plants.
Witorsch, R. J. Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products. Critical Reviews in Toxicology, 44(6), 535-555. (2014).
Wu, Y., Sun, Q., Wang, Y.-w., Deng, C.-x., & Yu, C.-P. Comparative studies of aerobic and anaerobic biodegradation of methylparaben and propylparaben in activated sludge. Ecotoxicology and Environmental Safety, 138, 25-31. (2017).
Ziyaadini, M., Mehdinia, A., Khaleghi, L., & Nassiri, M. Assessment of concentration, bioaccumulation and sources of polycyclic aromatic hydrocarbons in zooplankton of Chabahar Bay. Marine Pollution Bulletin, 107(1), 408-412. (2016).
李宗益. 利用生物試驗及液相層析串聯式質譜儀檢測臺灣河川中之類(抗)糖皮質激素及類(抗)鹽皮質激素. (2015).
陳柏佑. 利用生物試驗法與液相層析串聯式質譜儀檢測臺灣污水處理廠中類(抗)雌激素、類(抗)雄激素、及類(抗)鹽皮質激素之活性變化,成功大學環境工程研究所學位論文. (2016).
黃正君. 臺灣污水處理廠中多環芳香烴受體與孕激素受體干擾活性之綜合評估,成功大學環境工程研究所學位論文. (2016).
葉奕伯. 以生物試驗法及液相層析串聯式質譜儀分析污水處理廠中內分泌干擾物質及其衍生物之變化,成功大學環境工程研究所學位論文. (2014).
臺南市官田水資源回收中心. [http://www.guantian-water.com.tw/about.php].